diff categorical/plausible.html @ 2:b4de894a1e2e

initial import
author Robert McIntyre <rlm@mit.edu>
date Fri, 28 Oct 2011 00:03:05 -0700
parents
children
line wrap: on
line diff
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/categorical/plausible.html	Fri Oct 28 00:03:05 2011 -0700
     1.3 @@ -0,0 +1,336 @@
     1.4 +<?xml version="1.0" encoding="iso-8859-1"?>
     1.5 +<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
     1.6 +               "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
     1.7 +<html xmlns="http://www.w3.org/1999/xhtml"
     1.8 +lang="en" xml:lang="en">
     1.9 +<head>
    1.10 +<title>Categorification of Plausible Reasoning</title>
    1.11 +<meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"/>
    1.12 +<meta name="generator" content="Org-mode"/>
    1.13 +<meta name="generated" content="2011-07-09 14:19:42 EDT"/>
    1.14 +<meta name="author" content="Dylan Holmes"/>
    1.15 +<meta name="description" content=""/>
    1.16 +<meta name="keywords" content=""/>
    1.17 +<style type="text/css">
    1.18 + <!--/*--><![CDATA[/*><!--*/
    1.19 +  html { font-family: Times, serif; font-size: 12pt; }
    1.20 +  .title  { text-align: center; }
    1.21 +  .todo   { color: red; }
    1.22 +  .done   { color: green; }
    1.23 +  .tag    { background-color: #add8e6; font-weight:normal }
    1.24 +  .target { }
    1.25 +  .timestamp { color: #bebebe; }
    1.26 +  .timestamp-kwd { color: #5f9ea0; }
    1.27 +  .right  {margin-left:auto; margin-right:0px;  text-align:right;}
    1.28 +  .left   {margin-left:0px;  margin-right:auto; text-align:left;}
    1.29 +  .center {margin-left:auto; margin-right:auto; text-align:center;}
    1.30 +  p.verse { margin-left: 3% }
    1.31 +  pre {
    1.32 +	border: 1pt solid #AEBDCC;
    1.33 +	background-color: #F3F5F7;
    1.34 +	padding: 5pt;
    1.35 +	font-family: courier, monospace;
    1.36 +        font-size: 90%;
    1.37 +        overflow:auto;
    1.38 +  }
    1.39 +  table { border-collapse: collapse; }
    1.40 +  td, th { vertical-align: top;  }
    1.41 +  th.right  { text-align:center;  }
    1.42 +  th.left   { text-align:center;   }
    1.43 +  th.center { text-align:center; }
    1.44 +  td.right  { text-align:right;  }
    1.45 +  td.left   { text-align:left;   }
    1.46 +  td.center { text-align:center; }
    1.47 +  dt { font-weight: bold; }
    1.48 +  div.figure { padding: 0.5em; }
    1.49 +  div.figure p { text-align: center; }
    1.50 +  textarea { overflow-x: auto; }
    1.51 +  .linenr { font-size:smaller }
    1.52 +  .code-highlighted {background-color:#ffff00;}
    1.53 +  .org-info-js_info-navigation { border-style:none; }
    1.54 +  #org-info-js_console-label { font-size:10px; font-weight:bold;
    1.55 +                               white-space:nowrap; }
    1.56 +  .org-info-js_search-highlight {background-color:#ffff00; color:#000000;
    1.57 +                                 font-weight:bold; }
    1.58 +  /*]]>*/-->
    1.59 +</style>
    1.60 +<script type="text/javascript">
    1.61 +<!--/*--><![CDATA[/*><!--*/
    1.62 + function CodeHighlightOn(elem, id)
    1.63 + {
    1.64 +   var target = document.getElementById(id);
    1.65 +   if(null != target) {
    1.66 +     elem.cacheClassElem = elem.className;
    1.67 +     elem.cacheClassTarget = target.className;
    1.68 +     target.className = "code-highlighted";
    1.69 +     elem.className   = "code-highlighted";
    1.70 +   }
    1.71 + }
    1.72 + function CodeHighlightOff(elem, id)
    1.73 + {
    1.74 +   var target = document.getElementById(id);
    1.75 +   if(elem.cacheClassElem)
    1.76 +     elem.className = elem.cacheClassElem;
    1.77 +   if(elem.cacheClassTarget)
    1.78 +     target.className = elem.cacheClassTarget;
    1.79 + }
    1.80 +/*]]>*///-->
    1.81 +</script>
    1.82 +<script type="text/javascript" src="../MathJax/MathJax.js">
    1.83 +<!--/*--><![CDATA[/*><!--*/
    1.84 +    MathJax.Hub.Config({
    1.85 +        // Only one of the two following lines, depending on user settings
    1.86 +        // First allows browser-native MathML display, second forces HTML/CSS
    1.87 +            config: ["MMLorHTML.js"], jax: ["input/TeX"],
    1.88 +        //  jax: ["input/TeX", "output/HTML-CSS"],
    1.89 +        extensions: ["tex2jax.js","TeX/AMSmath.js","TeX/AMSsymbols.js",
    1.90 +                     "TeX/noUndefined.js"],
    1.91 +        tex2jax: {
    1.92 +            inlineMath: [ ["\\(","\\)"] ],
    1.93 +            displayMath: [ ['$$','$$'], ["\\[","\\]"], ["\\begin{displaymath}","\\end{displaymath}"] ],
    1.94 +            skipTags: ["script","noscript","style","textarea","pre","code"],
    1.95 +            ignoreClass: "tex2jax_ignore",
    1.96 +            processEscapes: false,
    1.97 +            processEnvironments: true,
    1.98 +            preview: "TeX"
    1.99 +        },
   1.100 +        showProcessingMessages: true,
   1.101 +        displayAlign: "left",
   1.102 +        displayIndent: "2em",
   1.103 +
   1.104 +        "HTML-CSS": {
   1.105 +             scale: 100,
   1.106 +             availableFonts: ["STIX","TeX"],
   1.107 +             preferredFont: "TeX",
   1.108 +             webFont: "TeX",
   1.109 +             imageFont: "TeX",
   1.110 +             showMathMenu: true,
   1.111 +        },
   1.112 +        MMLorHTML: {
   1.113 +             prefer: {
   1.114 +                 MSIE:    "MML",
   1.115 +                 Firefox: "MML",
   1.116 +                 Opera:   "HTML",
   1.117 +                 other:   "HTML"
   1.118 +             }
   1.119 +        }
   1.120 +    });
   1.121 +/*]]>*///-->
   1.122 +</script>
   1.123 +</head>
   1.124 +<body>
   1.125 +<div id="content">
   1.126 +
   1.127 +
   1.128 +
   1.129 +
   1.130 +<div id="table-of-contents">
   1.131 +<h2>Table of Contents</h2>
   1.132 +<div id="text-table-of-contents">
   1.133 +<ul>
   1.134 +<li><a href="#sec-1">1 Deductive and inductive posets </a>
   1.135 +<ul>
   1.136 +<li><a href="#sec-1-1">1.1 Definition </a></li>
   1.137 +<li><a href="#sec-1-2">1.2 A canonical map from  deductive posets to inductive posets </a></li>
   1.138 +</ul>
   1.139 +</li>
   1.140 +<li><a href="#sec-2">2 Assigning plausibilities to inductive posets </a>
   1.141 +<ul>
   1.142 +<li><a href="#sec-2-1">2.1 Consistent reasoning as a commutative diagram </a></li>
   1.143 +<li><a href="#sec-2-2">2.2 ``Multiplicity'' is reciprocal probability </a></li>
   1.144 +<li><a href="#sec-2-3">2.3 Laws for multiplicity </a></li>
   1.145 +</ul>
   1.146 +</li>
   1.147 +</ul>
   1.148 +</div>
   1.149 +</div>
   1.150 +
   1.151 +<div id="outline-container-1" class="outline-2">
   1.152 +<h2 id="sec-1"><span class="section-number-2">1</span> Deductive and inductive posets </h2>
   1.153 +<div class="outline-text-2" id="text-1">
   1.154 +
   1.155 +
   1.156 +
   1.157 +</div>
   1.158 +
   1.159 +<div id="outline-container-1-1" class="outline-3">
   1.160 +<h3 id="sec-1-1"><span class="section-number-3">1.1</span> Definition </h3>
   1.161 +<div class="outline-text-3" id="text-1-1">
   1.162 +
   1.163 +<p>If you have a collection \(P\) of logical propositions, you can order them by
   1.164 +implication: \(a\) precedes \(b\) if and only if \(a\) implies
   1.165 +\(b\). This makes \(P\) into a poset. Since the ordering arose from
   1.166 +deductive implication, we'll call this a <i>deductive poset</i>.
   1.167 +</p>
   1.168 +<p>
   1.169 +If you have a deductive poset \(P\),  you can create a related poset \(P^*\)
   1.170 +as follows: the underlying set is the same, and for any two
   1.171 +propositions \(a\) and \(b\) in \(P\), \(a\) precedes
   1.172 +\(ab\) in \(P^*\). We'll call this an <i>inductive poset</i>.
   1.173 +</p>
   1.174 +</div>
   1.175 +
   1.176 +</div>
   1.177 +
   1.178 +<div id="outline-container-1-2" class="outline-3">
   1.179 +<h3 id="sec-1-2"><span class="section-number-3">1.2</span> A canonical map from  deductive posets to inductive posets </h3>
   1.180 +<div class="outline-text-3" id="text-1-2">
   1.181 +
   1.182 +<p>Each poset corresponds with a poset-category, that is a category with
   1.183 +at most one arrow between any two objects. Considered as categories,
   1.184 +inductive and deuctive posets are related as follows: there is a map
   1.185 +\(\mathscr{F}\) which sends each arrow \(a\rightarrow b\) in \(P\) to
   1.186 +the arrow \(a\rightarrow ab\) in \(P^*\). In fact, since \(a\) implies
   1.187 +\(b\) if and only if \(a = ab\), \(\mathscr{F}\) sends each arrow  in \(P\) to
   1.188 +an identity arrow  in \(P^*\) (specifically, it sends the arrow
   1.189 +\(a\rightarrow b\) to the identity arrow \(a\rightarrow a\)).
   1.190 +</p>
   1.191 +
   1.192 +</div>
   1.193 +</div>
   1.194 +
   1.195 +</div>
   1.196 +
   1.197 +<div id="outline-container-2" class="outline-2">
   1.198 +<h2 id="sec-2"><span class="section-number-2">2</span> Assigning plausibilities to inductive posets </h2>
   1.199 +<div class="outline-text-2" id="text-2">
   1.200 +
   1.201 +
   1.202 +<p>
   1.203 +Inductive posets encode the relative (<i>qualitative</i>) plausibilities of its
   1.204 +propositions: there exists an arrow \(x\rightarrow y\) only if \(x\)
   1.205 +is at least as plausible as \(y\).
   1.206 +</p>
   1.207 +
   1.208 +</div>
   1.209 +
   1.210 +<div id="outline-container-2-1" class="outline-3">
   1.211 +<h3 id="sec-2-1"><span class="section-number-3">2.1</span> Consistent reasoning as a commutative diagram </h3>
   1.212 +<div class="outline-text-3" id="text-2-1">
   1.213 +
   1.214 +<p>Inductive categories enable the following neat trick: we can interpret
   1.215 +the objects of \(P^*\) as states of given information and interpret
   1.216 +each arrow \(a\rightarrow ab\) in \(P^*\) as an inductive inference: the arrow
   1.217 +\(a\rightarrow ab\) represents an inferential leap from the state of
   1.218 +knowledge where only \(a\) is given to the state of knowledge where
   1.219 +both \(a\) and \(b\) are given&mdash; in this way, it represents
   1.220 +the process of inferring \(b\) when  given \(a\), and we label the
   1.221 +arrow with \((b|a)\).
   1.222 +</p>
   1.223 +<p>
   1.224 +This trick has several important features that suggest its usefulness,
   1.225 +namely
   1.226 +</p><ul>
   1.227 +<li>Composition of arrows corresponds to compound inference.
   1.228 +</li>
   1.229 +<li>In the special case of deductive inference, the inferential arrow is an
   1.230 +   identity; the source and destination states of knowledge are the same.
   1.231 +</li>
   1.232 +<li>One aspect of the consistency requirement of Jaynes<sup><a class="footref" name="fnr.1" href="#fn.1">1</a></sup> takes the form of a
   1.233 +   commutative square: \(x\rightarrow ax \rightarrow abx\) =
   1.234 +   \(x\rightarrow bx \rightarrow abx\) is the categorified version of
   1.235 +   \((AB|X)=(A|X)\cdot(B|AX)=(B|X)\cdot(A|BX)\).
   1.236 +</li>
   1.237 +<li>We can make plausibility assignments by enriching the inductive
   1.238 +   category \(P^*\) over some monoidal category, e.g. the set of real numbers
   1.239 +   (considered as a category) with its usual multiplication. <i>When we do</i>,
   1.240 +   the identity arrows of \(P^*\) &mdash;corresponding to
   1.241 +   deductive inferences&mdash; are assigned a value of certainty automatically.
   1.242 +</li>
   1.243 +</ul>
   1.244 +
   1.245 +
   1.246 +</div>
   1.247 +
   1.248 +</div>
   1.249 +
   1.250 +<div id="outline-container-2-2" class="outline-3">
   1.251 +<h3 id="sec-2-2"><span class="section-number-3">2.2</span> ``Multiplicity'' is reciprocal probability </h3>
   1.252 +<div class="outline-text-3" id="text-2-2">
   1.253 +
   1.254 +<p>The natural numbers have a comparatively concrete origin: they are the
   1.255 +result of decategorifying the category of finite sets<sup><a class="footref" name="fnr.2" href="#fn.2">2</a></sup>, or the
   1.256 +coequalizer of the arrows from a one-object category to a two-object
   1.257 +category with a single nonidentity arrow. Extensions of the set of
   1.258 +natural numbers&mdash; such as
   1.259 +the set of integers or rational numbers or real numbers&mdash; strike
   1.260 +me as being somewhat more abstract (however, see the Eudoxus
   1.261 +construction of the real numbers).
   1.262 +</p>
   1.263 +<p>
   1.264 +Jaynes points out that our existing choice of scale for probabilities
   1.265 +(i.e., the scale from 0 for impossibility to 1 for
   1.266 +certainty) has a degree of freedom: any monotonic function of
   1.267 +probability encodes the same information that probability does. Though
   1.268 +the resulting laws for compound probability and so on change in form
   1.269 +when probabilities are changed, they do not change in content. 
   1.270 +</p>
   1.271 +<p>
   1.272 +With this in mind, it seems natural  and permissible to use not <i>probability</i> but
   1.273 +<i>reciprocal probability</i> instead. This scale, which we might
   1.274 + call <i>multiplicity</i>, ranges from 1 (certainty) to
   1.275 +positive infinity (impossibility); higher numbers are ascribed to
   1.276 +less-plausible events.
   1.277 +</p>
   1.278 +<p>
   1.279 +In this way, the ``probability''
   1.280 +associated with choosing one out of \(n\) indistinguishable choices
   1.281 +becomes identified with \(n\).
   1.282 +</p>
   1.283 +</div>
   1.284 +
   1.285 +</div>
   1.286 +
   1.287 +<div id="outline-container-2-3" class="outline-3">
   1.288 +<h3 id="sec-2-3"><span class="section-number-3">2.3</span> Laws for multiplicity </h3>
   1.289 +<div class="outline-text-3" id="text-2-3">
   1.290 +
   1.291 +<p>Jaynes derives laws of probability; either his method or his results
   1.292 +can be used to obtain laws for multiplicities.
   1.293 +</p>
   1.294 +<dl>
   1.295 +<dt>product rule</dt><dd>The product rule is unchanged: \(\xi(AB|X)=\xi(A|X)\cdot
   1.296 +                   \xi(B|AX) = \xi(B|X)\cdot \xi(A|BX)\)
   1.297 +</dd>
   1.298 +<dt>certainty</dt><dd>States of absolute certainty are assigned a multiplicity
   1.299 +                of 1. States of absolute impossibility are assigned a
   1.300 +                multiplicity of positive infinity.
   1.301 +</dd>
   1.302 +<dt>entropy</dt><dd>In terms of probability, entropy has the form \(S=-\sum_i
   1.303 +              p_i \ln{p_i} = \sum_i p_i (-\ln{p_i}) = \sum_i p_i \ln{(1/p_i)}
   1.304 +              \). Hence, in terms of multiplicity, entropy
   1.305 +              has the form \(S = \sum_i \frac{\ln{\xi_i}}{\xi_i} \).
   1.306 +
   1.307 +<p>
   1.308 +              Another interesting quantity is \(\exp{S}\), which behaves
   1.309 +              multiplicitively rather than additively. \(\exp{S} =
   1.310 +              \prod_i \exp{\frac{\ln{\xi_i}}{\xi_i}} =
   1.311 +              \left(\exp{\ln{\xi_i}}\right)^{1/\xi_i} =  \prod_i \xi_i^{1/\xi_i} \)
   1.312 +</p></dd>
   1.313 +</dl>
   1.314 +
   1.315 +
   1.316 +
   1.317 +<div id="footnotes">
   1.318 +<h2 class="footnotes">Footnotes: </h2>
   1.319 +<div id="text-footnotes">
   1.320 +<p class="footnote"><sup><a class="footnum" name="fn.1" href="#fnr.1">1</a></sup> <i>(IIIa) If a conclusion can be reasoned out in more than one way, then every possible way must lead to the same result.</i>
   1.321 +</p>
   1.322 +
   1.323 +<p class="footnote"><sup><a class="footnum" name="fn.2" href="#fnr.2">2</a></sup> As Baez explains.
   1.324 +</p>
   1.325 +</div>
   1.326 +</div>
   1.327 +</div>
   1.328 +
   1.329 +</div>
   1.330 +</div>
   1.331 +<div id="postamble">
   1.332 +<p class="date">Date: 2011-07-09 14:19:42 EDT</p>
   1.333 +<p class="author">Author: Dylan Holmes</p>
   1.334 +<p class="creator">Org version 7.6 with Emacs version 23</p>
   1.335 +<a href="http://validator.w3.org/check?uri=referer">Validate XHTML 1.0</a>
   1.336 +</div>
   1.337 +</div>
   1.338 +</body>
   1.339 +</html>