Mercurial > dylan
comparison sicm/utils.org @ 2:b4de894a1e2e
initial import
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Fri, 28 Oct 2011 00:03:05 -0700 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1:8d8278e09888 | 2:b4de894a1e2e |
---|---|
1 #+TITLE: Building a Classical Mechanics Library in Clojure | |
2 #+author: Dylan Holmes | |
3 #+EMAIL: rlm@mit.edu | |
4 #+MATHJAX: align:"left" mathml:t path:"../MathJax/MathJax.js" | |
5 #+STYLE: <link rel="stylesheet" type="text/css" href="../css/aurellem.css" /> | |
6 #+OPTIONS: H:3 num:t toc:t \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t | |
7 #+SETUPFILE: ../templates/level-0.org | |
8 #+INCLUDE: ../templates/level-0.org | |
9 #+BABEL: :noweb yes :results silent | |
10 | |
11 * Useful data types | |
12 | |
13 ** Complex numbers | |
14 | |
15 ** Power series | |
16 | |
17 ** Tuples and tensors | |
18 | |
19 *** Tuples are \ldquo{}sequences with spin\rdquo{} | |
20 | |
21 #+srcname: tuples | |
22 #+begin_src clojure | |
23 (in-ns 'sicm.utils) | |
24 | |
25 ;; Let some objects have spin | |
26 | |
27 (defprotocol Spinning | |
28 (up? [this]) | |
29 (down? [this])) | |
30 | |
31 (defn spin | |
32 "Returns the spin of the Spinning s, either :up or :down" | |
33 [#^Spinning s] | |
34 (cond (up? s) :up (down? s) :down)) | |
35 | |
36 | |
37 ;; DEFINITION: A tuple is a sequence with spin | |
38 | |
39 (deftype Tuple | |
40 [spin coll] | |
41 | |
42 clojure.lang.Seqable | |
43 (seq [this] (seq (.coll this))) | |
44 | |
45 clojure.lang.Counted | |
46 (count [this] (count (.coll this))) | |
47 | |
48 Spinning | |
49 (up? [this] (= ::up (.spin this))) | |
50 (down? [this] (= ::down (.spin this)))) | |
51 | |
52 (defmethod print-method Tuple | |
53 [o w] | |
54 (print-simple | |
55 (if (up? o) | |
56 (str "u" (.coll o)) | |
57 (str "d" (vec(.coll o)))) | |
58 w)) | |
59 | |
60 (def tuple? #(= (type %) Tuple)) | |
61 | |
62 ;; CONSTRUCTORS | |
63 | |
64 (defn up | |
65 "Create a new up-tuple containing the contents of coll." | |
66 [coll] | |
67 (Tuple. ::up coll)) | |
68 | |
69 (defn down | |
70 "Create a new down-tuple containing the contents of coll." | |
71 [coll] | |
72 (Tuple. ::down coll)) | |
73 | |
74 (defn same-spin | |
75 "Creates a tuple which has the same spin as tuple and which contains | |
76 the contents of coll." | |
77 [tuple coll] | |
78 (if (up? tuple) | |
79 (up coll) | |
80 (down coll))) | |
81 | |
82 (defn opposite-spin | |
83 "Create a tuple which has opposite spin to tuple and which contains | |
84 the contents of coll." | |
85 [tuple coll] | |
86 (if (up? tuple) | |
87 (down coll) | |
88 (up coll))) | |
89 #+end_src | |
90 | |
91 | |
92 | |
93 *** Matrices | |
94 #+srcname:matrices | |
95 #+begin_src clojure | |
96 (in-ns 'sicm.utils) | |
97 (require 'incanter.core) ;; use incanter's fast matrices | |
98 | |
99 | |
100 (defn all-equal? [coll] | |
101 (if (empty? (rest coll)) true | |
102 (and (= (first coll) (second coll)) | |
103 (recur (rest coll))))) | |
104 | |
105 | |
106 (defprotocol Matrix | |
107 (rows [matrix]) | |
108 (cols [matrix]) | |
109 (diagonal [matrix]) | |
110 (trace [matrix]) | |
111 (determinant [matrix]) | |
112 (transpose [matrix]) | |
113 (conjugate [matrix]) | |
114 ) | |
115 | |
116 (extend-protocol Matrix incanter.Matrix | |
117 (rows [rs] (map down (apply map vector (apply map vector rs)))) | |
118 (cols [rs] (map up (apply map vector rs))) | |
119 (diagonal [matrix] (incanter.core/diag matrix) ) | |
120 (determinant [matrix] (incanter.core/det matrix)) | |
121 (trace [matrix] (incanter.core/trace matrix)) | |
122 (transpose [matrix] (incanter.core/trans matrix))) | |
123 | |
124 (defn count-rows [matrix] | |
125 ((comp count rows) matrix)) | |
126 | |
127 (defn count-cols [matrix] | |
128 ((comp count cols) matrix)) | |
129 | |
130 (defn square? [matrix] | |
131 (= (count-rows matrix) (count-cols matrix))) | |
132 | |
133 (defn identity-matrix | |
134 "Define a square matrix of size n-by-n with 1s along the diagonal and | |
135 0s everywhere else." | |
136 [n] | |
137 (incanter.core/identity-matrix n)) | |
138 | |
139 | |
140 (defn matrix-by-rows | |
141 "Define a matrix by giving its rows." | |
142 [& rows] | |
143 (if | |
144 (not (all-equal? (map count rows))) | |
145 (throw (Exception. "All rows in a matrix must have the same number of elements.")) | |
146 (incanter.core/matrix (vec rows)))) | |
147 | |
148 (defn matrix-by-cols | |
149 "Define a matrix by giving its columns" | |
150 [& cols] | |
151 (if (not (all-equal? (map count cols))) | |
152 (throw (Exception. "All columns in a matrix must have the same number of elements.")) | |
153 (incanter.core/matrix (vec (apply map vector cols))))) | |
154 | |
155 (defn identity-matrix | |
156 "Define a square matrix of size n-by-n with 1s along the diagonal and | |
157 0s everywhere else." | |
158 [n] | |
159 (incanter.core/identity-matrix n)) | |
160 | |
161 #+end_src | |
162 | |
163 ** Generic Operations | |
164 #+srcname:arith-tuple | |
165 #+begin_src clojure | |
166 (in-ns 'sicm.utils) | |
167 (use 'clojure.contrib.generic.arithmetic | |
168 'clojure.contrib.generic.collection | |
169 'clojure.contrib.generic.functor | |
170 'clojure.contrib.generic.math-functions) | |
171 | |
172 (defn numbers? | |
173 "Returns true if all arguments are numbers, else false." | |
174 [& xs] | |
175 (every? number? xs)) | |
176 | |
177 (defn tuple-surgery | |
178 "Applies the function f to the items of tuple and the additional | |
179 arguments, if any. Returns a Tuple of the same type as tuple." | |
180 [tuple f & xs] | |
181 ((if (up? tuple) up down) | |
182 (apply f (seq tuple) xs))) | |
183 | |
184 | |
185 | |
186 ;;; CONTRACTION collapses two compatible tuples into a number. | |
187 | |
188 (defn contractible? | |
189 "Returns true if the tuples a and b are compatible for contraction, | |
190 else false. Tuples are compatible if they have the same number of | |
191 components, they have opposite spins, and their elements are | |
192 pairwise-compatible." | |
193 [a b] | |
194 (and | |
195 (isa? (type a) Tuple) | |
196 (isa? (type b) Tuple) | |
197 (= (count a) (count b)) | |
198 (not= (spin a) (spin b)) | |
199 | |
200 (not-any? false? | |
201 (map #(or | |
202 (numbers? %1 %2) | |
203 (contractible? %1 %2)) | |
204 a b)))) | |
205 | |
206 (defn contract | |
207 "Contracts two tuples, returning the sum of the | |
208 products of the corresponding items. Contraction is recursive on | |
209 nested tuples." | |
210 [a b] | |
211 (if (not (contractible? a b)) | |
212 (throw | |
213 (Exception. "Not compatible for contraction.")) | |
214 (reduce + | |
215 (map | |
216 (fn [x y] | |
217 (if (numbers? x y) | |
218 (* x y) | |
219 (contract x y))) | |
220 a b)))) | |
221 | |
222 | |
223 | |
224 | |
225 | |
226 (defmethod conj Tuple | |
227 [tuple & xs] | |
228 (tuple-surgery tuple #(apply conj % xs))) | |
229 | |
230 (defmethod fmap Tuple | |
231 [f tuple] | |
232 (tuple-surgery tuple (partial map f))) | |
233 | |
234 | |
235 | |
236 ;; TODO: define Scalar, and add it to the hierarchy above Number and Complex | |
237 | |
238 | |
239 (defmethod * [Tuple Tuple] ; tuple*tuple | |
240 [a b] | |
241 (if (contractible? a b) | |
242 (contract a b) | |
243 (map (partial * a) b))) | |
244 | |
245 | |
246 (defmethod * [java.lang.Number Tuple] ;; scalar * tuple | |
247 [a x] (fmap (partial * a) x)) | |
248 | |
249 (defmethod * [Tuple java.lang.Number] | |
250 [x a] (* a x)) | |
251 | |
252 (defmethod * [java.lang.Number incanter.Matrix] ;; scalar * matrix | |
253 [x M] (incanter.core/mult x M)) | |
254 | |
255 (defmethod * [incanter.Matrix java.lang.Number] | |
256 [M x] (* x M)) | |
257 | |
258 (defmethod * [incanter.Matrix incanter.Matrix] ;; matrix * matrix | |
259 [M1 M2] | |
260 (incanter.core/mmult M1 M2)) | |
261 | |
262 (defmethod * [incanter.Matrix Tuple] ;; matrix * tuple | |
263 [M v] | |
264 (if (and (apply numbers? v) (up? v)) | |
265 (* M (matrix-by-cols v)) | |
266 (throw (Exception. "Currently, you can only multiply a matrix by a tuple of *numbers*")) | |
267 )) | |
268 | |
269 (defmethod * [Tuple incanter.Matrix] ;; tuple * Matrix | |
270 [v M] | |
271 (if (and (apply numbers? v) (down? v)) | |
272 (* (matrix-by-rows v) M) | |
273 (throw (Exception. "Currently, you can only multiply a matrix by a tuple of *numbers*")) | |
274 )) | |
275 | |
276 | |
277 (defmethod exp incanter.Matrix | |
278 [M] | |
279 (incanter.core/exp M)) | |
280 | |
281 #+end_src | |
282 | |
283 * Operators and Differentiation | |
284 ** Operators | |
285 #+scrname: operators | |
286 #+begin_src clojure | |
287 (in-ns 'sicm.utils) | |
288 (use 'clojure.contrib.seq | |
289 'clojure.contrib.generic.arithmetic | |
290 'clojure.contrib.generic.collection | |
291 'clojure.contrib.generic.math-functions) | |
292 | |
293 (defmethod + [clojure.lang.IFn clojure.lang.IFn] | |
294 [f g] | |
295 (fn [& args] | |
296 (+ (apply f args) (apply g args)))) | |
297 | |
298 (defmethod * [clojure.lang.IFn clojure.lang.IFn] | |
299 [f g] | |
300 (fn [& args] | |
301 (* (apply f args) (apply g args)))) | |
302 | |
303 (defmethod / [clojure.lang.IFn java.lang.Number] | |
304 [f x] | |
305 (fn [& args] | |
306 (/ (apply f args) x))) | |
307 | |
308 | |
309 (defmethod - [clojure.lang.IFn] | |
310 [f] | |
311 (fn [& args] | |
312 (- (apply f args)))) | |
313 | |
314 (defmethod - [clojure.lang.IFn clojure.lang.IFn] | |
315 [f g] | |
316 (fn [& args] | |
317 (- (apply f args) (apply g args)))) | |
318 | |
319 (defmethod pow [clojure.lang.IFn java.lang.Number] | |
320 [f x] | |
321 (fn [& args] | |
322 (pow (apply f args) x))) | |
323 | |
324 | |
325 (defmethod + [java.lang.Number clojure.lang.IFn] | |
326 [x f] | |
327 (fn [& args] | |
328 (+ x (apply f args)))) | |
329 | |
330 (defmethod * [java.lang.Number clojure.lang.IFn] | |
331 [x f] | |
332 (fn [& args] | |
333 (* x (apply f args)))) | |
334 | |
335 (defmethod * [clojure.lang.IFn java.lang.Number] | |
336 [f x] | |
337 (* x f)) | |
338 (defmethod + [clojure.lang.IFn java.lang.Number] | |
339 [f x] | |
340 (+ x f)) | |
341 | |
342 #+end_src | |
343 | |
344 ** Differential Terms and Sequences | |
345 #+srcname: differential | |
346 #+begin_src clojure | |
347 (in-ns 'sicm.utils) | |
348 (use 'clojure.contrib.seq | |
349 'clojure.contrib.generic.arithmetic | |
350 'clojure.contrib.generic.collection | |
351 'clojure.contrib.generic.math-functions) | |
352 | |
353 ;;∂ | |
354 | |
355 ;; DEFINITION : Differential Term | |
356 | |
357 ;; A quantity with infinitesimal components, e.g. x, dxdy, 4dydz. The | |
358 ;; coefficient of the quantity is returned by the 'coefficient' method, | |
359 ;; while the sequence of differential parameters is returned by the | |
360 ;; method 'partials'. | |
361 | |
362 ;; Instead of using (potentially ambiguous) letters to denote | |
363 ;; differential parameters (dx,dy,dz), we use integers. So, dxdz becomes [0 2]. | |
364 | |
365 ;; The coefficient can be any arithmetic object; the | |
366 ;; partials must be a nonrepeating sorted sequence of nonnegative | |
367 ;; integers. | |
368 | |
369 ;; (deftype DifferentialTerm [coefficient partials]) | |
370 | |
371 ;; (defn differential-term | |
372 ;; "Make a differential term from a coefficient and list of partials." | |
373 ;; [coefficient partials] | |
374 ;; (if (and (coll? partials) (every? #(and (integer? %) (not(neg? %))) partials)) | |
375 ;; (DifferentialTerm. coefficient (set partials)) | |
376 ;; (throw (java.lang.IllegalArgumentException. "Partials must be a collection of integers.")))) | |
377 | |
378 | |
379 ;; DEFINITION : Differential Sequence | |
380 ;; A differential sequence is a sequence of differential terms, all with different partials. | |
381 ;; Internally, it is a map from the partials of each term to their coefficients. | |
382 | |
383 (deftype DifferentialSeq | |
384 [terms] | |
385 ;;clojure.lang.IPersistentMap | |
386 clojure.lang.Associative | |
387 (assoc [this key val] | |
388 (DifferentialSeq. | |
389 (cons (differential-term val key) terms))) | |
390 (cons [this x] | |
391 (DifferentialSeq. (cons x terms))) | |
392 (containsKey [this key] | |
393 (not(nil? (find-first #(= (.partials %) key) terms)))) | |
394 (count [this] (count (.terms this))) | |
395 (empty [this] (DifferentialSeq. [])) | |
396 (entryAt [this key] | |
397 ((juxt #(.partials %) #(.coefficient %)) | |
398 (find-first #(= (.partials %) key) terms))) | |
399 (seq [this] (seq (.terms this)))) | |
400 | |
401 (def differential? #(= (type %) DifferentialSeq)) | |
402 | |
403 (defn zeroth-order? | |
404 "Returns true if the differential sequence has at most a constant term." | |
405 [dseq] | |
406 (and | |
407 (differential? dseq) | |
408 (every? | |
409 #(= #{} %) | |
410 (keys (.terms dseq))))) | |
411 | |
412 (defmethod fmap DifferentialSeq | |
413 [f dseq] | |
414 (DifferentialSeq. | |
415 (fmap f (.terms dseq)))) | |
416 | |
417 | |
418 | |
419 | |
420 ;; BUILDING DIFFERENTIAL OBJECTS | |
421 | |
422 (defn differential-seq | |
423 "Define a differential sequence by specifying an alternating | |
424 sequence of coefficients and lists of partials." | |
425 ([coefficient partials] | |
426 (DifferentialSeq. {(set partials) coefficient})) | |
427 ([coefficient partials & cps] | |
428 (if (odd? (count cps)) | |
429 (throw (Exception. "differential-seq requires an even number of terms.")) | |
430 (DifferentialSeq. | |
431 (reduce | |
432 #(assoc %1 (set (second %2)) (first %2)) | |
433 {(set partials) coefficient} | |
434 (partition 2 cps)))))) | |
435 | |
436 | |
437 | |
438 (defn big-part | |
439 "Returns the part of the differential sequence that is finite, | |
440 i.e. not infinitely small. If the sequence is zeroth-order, returns | |
441 the coefficient of the zeroth-order term instead. " | |
442 [dseq] | |
443 (if (zeroth-order? dseq) (get (.terms dseq) #{}) | |
444 (let [m (.terms dseq) | |
445 keys (sort-by count (keys m)) | |
446 smallest-var (last (last keys))] | |
447 (DifferentialSeq. | |
448 (reduce | |
449 #(assoc %1 (first %2) (second %2)) | |
450 {} | |
451 (remove #((first %) smallest-var) m)))))) | |
452 | |
453 | |
454 (defn small-part | |
455 "Returns the part of the differential sequence that infinitely | |
456 small. If the sequence is zeroth-order, returns zero." | |
457 [dseq] | |
458 (if (zeroth-order? dseq) 0 | |
459 (let [m (.terms dseq) | |
460 keys (sort-by count (keys m)) | |
461 smallest-var (last (last keys))] | |
462 (DifferentialSeq. | |
463 (reduce | |
464 #(assoc %1 (first %2) (second %2)) {} | |
465 (filter #((first %) smallest-var) m)))))) | |
466 | |
467 | |
468 | |
469 (defn cartesian-product [set1 set2] | |
470 (reduce concat | |
471 (for [x set1] | |
472 (for [y set2] | |
473 [x y])))) | |
474 | |
475 (defn nth-subset [n] | |
476 (if (zero? n) [] | |
477 (let [lg2 #(/ (log %) (log 2)) | |
478 k (int(java.lang.Math/floor (lg2 n))) | |
479 ] | |
480 (cons k | |
481 (nth-subset (- n (pow 2 k))))))) | |
482 | |
483 (def all-partials | |
484 (lazy-seq (map nth-subset (range)))) | |
485 | |
486 | |
487 (defn differential-multiply | |
488 "Multiply two differential sequences. The square of any differential | |
489 variable is zero since differential variables are infinitesimally | |
490 small." | |
491 [dseq1 dseq2] | |
492 (DifferentialSeq. | |
493 (reduce | |
494 (fn [m [[vars1 coeff1] [vars2 coeff2]]] | |
495 (if (not (empty? (clojure.set/intersection vars1 vars2))) | |
496 m | |
497 (assoc m (clojure.set/union vars1 vars2) (* coeff1 coeff2)))) | |
498 {} | |
499 (cartesian-product (.terms dseq1) (.terms dseq2))))) | |
500 | |
501 | |
502 | |
503 (defmethod * [DifferentialSeq DifferentialSeq] | |
504 [dseq1 dseq2] | |
505 (differential-multiply dseq1 dseq2)) | |
506 | |
507 (defmethod + [DifferentialSeq DifferentialSeq] | |
508 [dseq1 dseq2] | |
509 (DifferentialSeq. | |
510 (merge-with + (.terms dseq1) (.terms dseq2)))) | |
511 | |
512 (defmethod * [java.lang.Number DifferentialSeq] | |
513 [x dseq] | |
514 (fmap (partial * x) dseq)) | |
515 | |
516 (defmethod * [DifferentialSeq java.lang.Number] | |
517 [dseq x] | |
518 (fmap (partial * x) dseq)) | |
519 | |
520 (defmethod + [java.lang.Number DifferentialSeq] | |
521 [x dseq] | |
522 (+ (differential-seq x []) dseq)) | |
523 (defmethod + [DifferentialSeq java.lang.Number] | |
524 [dseq x] | |
525 (+ dseq (differential-seq x []))) | |
526 | |
527 (defmethod - DifferentialSeq | |
528 [x] | |
529 (fmap - x)) | |
530 | |
531 | |
532 ;; DERIVATIVES | |
533 | |
534 | |
535 | |
536 (defn linear-approximator | |
537 "Returns an operator that linearly approximates the given function." | |
538 ([f df|dx] | |
539 (fn [x] | |
540 (let [big-part (big-part x) | |
541 small-part (small-part x)] | |
542 ;; f(x+dx) ~= f(x) + f'(x)dx | |
543 (+ (f big-part) | |
544 (* (df|dx big-part) small-part) | |
545 )))) | |
546 | |
547 ([f df|dx df|dy] | |
548 (fn [x y] | |
549 (let [X (big-part x) | |
550 Y (big-part y) | |
551 DX (small-part x) | |
552 DY (small-part y)] | |
553 (+ (f X Y) | |
554 (* DX (f df|dx X Y)) | |
555 (* DY (f df|dy X Y))))))) | |
556 | |
557 | |
558 | |
559 | |
560 | |
561 (defn D[f] | |
562 (fn[x] (f (+ x (differential-seq 1 [0] 1 [1] 1 [2]))))) | |
563 | |
564 (defn d[partials f] | |
565 (fn [x] | |
566 (get | |
567 (.terms ((D f)x)) | |
568 (set partials) | |
569 0 | |
570 ))) | |
571 | |
572 (defmethod exp DifferentialSeq [x] | |
573 ((linear-approximator exp exp) x)) | |
574 | |
575 (defmethod sin DifferentialSeq | |
576 [x] | |
577 ((linear-approximator sin cos) x)) | |
578 | |
579 (defmethod cos DifferentialSeq | |
580 [x] | |
581 ((linear-approximator cos #(- (sin %))) x)) | |
582 | |
583 (defmethod log DifferentialSeq | |
584 [x] | |
585 ((linear-approximator log (fn [x] (/ x)) ) x)) | |
586 | |
587 (defmethod / [DifferentialSeq DifferentialSeq] | |
588 [x y] | |
589 ((linear-approximator / | |
590 (fn [x y] (/ 1 y)) | |
591 (fn [x y] (- (/ x (* y y))))) | |
592 x y)) | |
593 | |
594 #+end_src | |
595 | |
596 | |
597 | |
598 * Derivatives Revisited | |
599 #+begin_src clojure | |
600 (in-ns 'sicm.utils) | |
601 (use 'clojure.contrib.seq | |
602 'clojure.contrib.generic.arithmetic | |
603 'clojure.contrib.generic.collection | |
604 'clojure.contrib.generic.math-functions) | |
605 | |
606 (defn replace-in | |
607 "Replaces the nth item in coll with the given item. If n is larger | |
608 than the size of coll, adds n to the end of the collection." | |
609 [coll n item] | |
610 (concat | |
611 (take n coll) | |
612 [item] | |
613 (drop (inc n) coll))) | |
614 | |
615 (defn euclidean-structure [f partials] | |
616 (fn sd[g v] | |
617 (cond | |
618 (tuple? v) | |
619 (opposite-spin | |
620 v | |
621 (map | |
622 (fn [n] | |
623 (sd (fn [xn] | |
624 (g | |
625 (same-spin v | |
626 (replace-in v n xn)))) | |
627 (nth v n))) | |
628 (range (count v))))))) | |
629 | |
630 | |
631 | |
632 | |
633 #+end_src | |
634 | |
635 | |
636 * Symbolic Quantities | |
637 | |
638 #+srcname: symbolic | |
639 #+begin_src clojure | |
640 (in-ns 'sicm.utils) | |
641 (use 'clojure.contrib.generic.arithmetic | |
642 'clojure.contrib.generic.math-functions) | |
643 | |
644 (deftype Symbolic | |
645 [type | |
646 expression]) | |
647 | |
648 (defn print-expression [s] | |
649 (print (.expression s))) | |
650 | |
651 (defn symbolic-number | |
652 [symbol] | |
653 (Symbolic. java.lang.Number symbol)) | |
654 | |
655 (defn simplify-expression [s] | |
656 (let [e (.expression s)] | |
657 (cond | |
658 (not(list? e)) e | |
659 (= (first e) '+) | |
660 ) | |
661 | |
662 | |
663 | |
664 (defmethod + [Symbolic Symbolic] | |
665 [x y] | |
666 (Symbolic. (.type x) (list '+ (.expression x) (.expression y)))) | |
667 | |
668 (defmethod + [Symbolic java.lang.Number] | |
669 [s x] | |
670 (if (zero? x) | |
671 s | |
672 (Symbolic. (.type s) (list '+ (.expression s) x)))) | |
673 | |
674 (defmethod sin Symbolic | |
675 [s] | |
676 (Symbolic. (.type s) (list 'sin (.expression s)))) | |
677 | |
678 #+end_src | |
679 | |
680 * COMMENT To-be-tangled Source | |
681 #+begin_src clojure :tangle utils.clj | |
682 (ns sicm.utils) | |
683 | |
684 <<tuples>> | |
685 <<matrices>> | |
686 <<arith-tuple>> | |
687 | |
688 <<differential>> | |
689 #+end_src | |
690 |