Mercurial > dylan
comparison categorical/plausible.html @ 2:b4de894a1e2e
initial import
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Fri, 28 Oct 2011 00:03:05 -0700 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1:8d8278e09888 | 2:b4de894a1e2e |
---|---|
1 <?xml version="1.0" encoding="iso-8859-1"?> | |
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" | |
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> | |
4 <html xmlns="http://www.w3.org/1999/xhtml" | |
5 lang="en" xml:lang="en"> | |
6 <head> | |
7 <title>Categorification of Plausible Reasoning</title> | |
8 <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"/> | |
9 <meta name="generator" content="Org-mode"/> | |
10 <meta name="generated" content="2011-07-09 14:19:42 EDT"/> | |
11 <meta name="author" content="Dylan Holmes"/> | |
12 <meta name="description" content=""/> | |
13 <meta name="keywords" content=""/> | |
14 <style type="text/css"> | |
15 <!--/*--><![CDATA[/*><!--*/ | |
16 html { font-family: Times, serif; font-size: 12pt; } | |
17 .title { text-align: center; } | |
18 .todo { color: red; } | |
19 .done { color: green; } | |
20 .tag { background-color: #add8e6; font-weight:normal } | |
21 .target { } | |
22 .timestamp { color: #bebebe; } | |
23 .timestamp-kwd { color: #5f9ea0; } | |
24 .right {margin-left:auto; margin-right:0px; text-align:right;} | |
25 .left {margin-left:0px; margin-right:auto; text-align:left;} | |
26 .center {margin-left:auto; margin-right:auto; text-align:center;} | |
27 p.verse { margin-left: 3% } | |
28 pre { | |
29 border: 1pt solid #AEBDCC; | |
30 background-color: #F3F5F7; | |
31 padding: 5pt; | |
32 font-family: courier, monospace; | |
33 font-size: 90%; | |
34 overflow:auto; | |
35 } | |
36 table { border-collapse: collapse; } | |
37 td, th { vertical-align: top; } | |
38 th.right { text-align:center; } | |
39 th.left { text-align:center; } | |
40 th.center { text-align:center; } | |
41 td.right { text-align:right; } | |
42 td.left { text-align:left; } | |
43 td.center { text-align:center; } | |
44 dt { font-weight: bold; } | |
45 div.figure { padding: 0.5em; } | |
46 div.figure p { text-align: center; } | |
47 textarea { overflow-x: auto; } | |
48 .linenr { font-size:smaller } | |
49 .code-highlighted {background-color:#ffff00;} | |
50 .org-info-js_info-navigation { border-style:none; } | |
51 #org-info-js_console-label { font-size:10px; font-weight:bold; | |
52 white-space:nowrap; } | |
53 .org-info-js_search-highlight {background-color:#ffff00; color:#000000; | |
54 font-weight:bold; } | |
55 /*]]>*/--> | |
56 </style> | |
57 <script type="text/javascript"> | |
58 <!--/*--><![CDATA[/*><!--*/ | |
59 function CodeHighlightOn(elem, id) | |
60 { | |
61 var target = document.getElementById(id); | |
62 if(null != target) { | |
63 elem.cacheClassElem = elem.className; | |
64 elem.cacheClassTarget = target.className; | |
65 target.className = "code-highlighted"; | |
66 elem.className = "code-highlighted"; | |
67 } | |
68 } | |
69 function CodeHighlightOff(elem, id) | |
70 { | |
71 var target = document.getElementById(id); | |
72 if(elem.cacheClassElem) | |
73 elem.className = elem.cacheClassElem; | |
74 if(elem.cacheClassTarget) | |
75 target.className = elem.cacheClassTarget; | |
76 } | |
77 /*]]>*///--> | |
78 </script> | |
79 <script type="text/javascript" src="../MathJax/MathJax.js"> | |
80 <!--/*--><![CDATA[/*><!--*/ | |
81 MathJax.Hub.Config({ | |
82 // Only one of the two following lines, depending on user settings | |
83 // First allows browser-native MathML display, second forces HTML/CSS | |
84 config: ["MMLorHTML.js"], jax: ["input/TeX"], | |
85 // jax: ["input/TeX", "output/HTML-CSS"], | |
86 extensions: ["tex2jax.js","TeX/AMSmath.js","TeX/AMSsymbols.js", | |
87 "TeX/noUndefined.js"], | |
88 tex2jax: { | |
89 inlineMath: [ ["\\(","\\)"] ], | |
90 displayMath: [ ['$$','$$'], ["\\[","\\]"], ["\\begin{displaymath}","\\end{displaymath}"] ], | |
91 skipTags: ["script","noscript","style","textarea","pre","code"], | |
92 ignoreClass: "tex2jax_ignore", | |
93 processEscapes: false, | |
94 processEnvironments: true, | |
95 preview: "TeX" | |
96 }, | |
97 showProcessingMessages: true, | |
98 displayAlign: "left", | |
99 displayIndent: "2em", | |
100 | |
101 "HTML-CSS": { | |
102 scale: 100, | |
103 availableFonts: ["STIX","TeX"], | |
104 preferredFont: "TeX", | |
105 webFont: "TeX", | |
106 imageFont: "TeX", | |
107 showMathMenu: true, | |
108 }, | |
109 MMLorHTML: { | |
110 prefer: { | |
111 MSIE: "MML", | |
112 Firefox: "MML", | |
113 Opera: "HTML", | |
114 other: "HTML" | |
115 } | |
116 } | |
117 }); | |
118 /*]]>*///--> | |
119 </script> | |
120 </head> | |
121 <body> | |
122 <div id="content"> | |
123 | |
124 | |
125 | |
126 | |
127 <div id="table-of-contents"> | |
128 <h2>Table of Contents</h2> | |
129 <div id="text-table-of-contents"> | |
130 <ul> | |
131 <li><a href="#sec-1">1 Deductive and inductive posets </a> | |
132 <ul> | |
133 <li><a href="#sec-1-1">1.1 Definition </a></li> | |
134 <li><a href="#sec-1-2">1.2 A canonical map from deductive posets to inductive posets </a></li> | |
135 </ul> | |
136 </li> | |
137 <li><a href="#sec-2">2 Assigning plausibilities to inductive posets </a> | |
138 <ul> | |
139 <li><a href="#sec-2-1">2.1 Consistent reasoning as a commutative diagram </a></li> | |
140 <li><a href="#sec-2-2">2.2 ``Multiplicity'' is reciprocal probability </a></li> | |
141 <li><a href="#sec-2-3">2.3 Laws for multiplicity </a></li> | |
142 </ul> | |
143 </li> | |
144 </ul> | |
145 </div> | |
146 </div> | |
147 | |
148 <div id="outline-container-1" class="outline-2"> | |
149 <h2 id="sec-1"><span class="section-number-2">1</span> Deductive and inductive posets </h2> | |
150 <div class="outline-text-2" id="text-1"> | |
151 | |
152 | |
153 | |
154 </div> | |
155 | |
156 <div id="outline-container-1-1" class="outline-3"> | |
157 <h3 id="sec-1-1"><span class="section-number-3">1.1</span> Definition </h3> | |
158 <div class="outline-text-3" id="text-1-1"> | |
159 | |
160 <p>If you have a collection \(P\) of logical propositions, you can order them by | |
161 implication: \(a\) precedes \(b\) if and only if \(a\) implies | |
162 \(b\). This makes \(P\) into a poset. Since the ordering arose from | |
163 deductive implication, we'll call this a <i>deductive poset</i>. | |
164 </p> | |
165 <p> | |
166 If you have a deductive poset \(P\), you can create a related poset \(P^*\) | |
167 as follows: the underlying set is the same, and for any two | |
168 propositions \(a\) and \(b\) in \(P\), \(a\) precedes | |
169 \(ab\) in \(P^*\). We'll call this an <i>inductive poset</i>. | |
170 </p> | |
171 </div> | |
172 | |
173 </div> | |
174 | |
175 <div id="outline-container-1-2" class="outline-3"> | |
176 <h3 id="sec-1-2"><span class="section-number-3">1.2</span> A canonical map from deductive posets to inductive posets </h3> | |
177 <div class="outline-text-3" id="text-1-2"> | |
178 | |
179 <p>Each poset corresponds with a poset-category, that is a category with | |
180 at most one arrow between any two objects. Considered as categories, | |
181 inductive and deuctive posets are related as follows: there is a map | |
182 \(\mathscr{F}\) which sends each arrow \(a\rightarrow b\) in \(P\) to | |
183 the arrow \(a\rightarrow ab\) in \(P^*\). In fact, since \(a\) implies | |
184 \(b\) if and only if \(a = ab\), \(\mathscr{F}\) sends each arrow in \(P\) to | |
185 an identity arrow in \(P^*\) (specifically, it sends the arrow | |
186 \(a\rightarrow b\) to the identity arrow \(a\rightarrow a\)). | |
187 </p> | |
188 | |
189 </div> | |
190 </div> | |
191 | |
192 </div> | |
193 | |
194 <div id="outline-container-2" class="outline-2"> | |
195 <h2 id="sec-2"><span class="section-number-2">2</span> Assigning plausibilities to inductive posets </h2> | |
196 <div class="outline-text-2" id="text-2"> | |
197 | |
198 | |
199 <p> | |
200 Inductive posets encode the relative (<i>qualitative</i>) plausibilities of its | |
201 propositions: there exists an arrow \(x\rightarrow y\) only if \(x\) | |
202 is at least as plausible as \(y\). | |
203 </p> | |
204 | |
205 </div> | |
206 | |
207 <div id="outline-container-2-1" class="outline-3"> | |
208 <h3 id="sec-2-1"><span class="section-number-3">2.1</span> Consistent reasoning as a commutative diagram </h3> | |
209 <div class="outline-text-3" id="text-2-1"> | |
210 | |
211 <p>Inductive categories enable the following neat trick: we can interpret | |
212 the objects of \(P^*\) as states of given information and interpret | |
213 each arrow \(a\rightarrow ab\) in \(P^*\) as an inductive inference: the arrow | |
214 \(a\rightarrow ab\) represents an inferential leap from the state of | |
215 knowledge where only \(a\) is given to the state of knowledge where | |
216 both \(a\) and \(b\) are given— in this way, it represents | |
217 the process of inferring \(b\) when given \(a\), and we label the | |
218 arrow with \((b|a)\). | |
219 </p> | |
220 <p> | |
221 This trick has several important features that suggest its usefulness, | |
222 namely | |
223 </p><ul> | |
224 <li>Composition of arrows corresponds to compound inference. | |
225 </li> | |
226 <li>In the special case of deductive inference, the inferential arrow is an | |
227 identity; the source and destination states of knowledge are the same. | |
228 </li> | |
229 <li>One aspect of the consistency requirement of Jaynes<sup><a class="footref" name="fnr.1" href="#fn.1">1</a></sup> takes the form of a | |
230 commutative square: \(x\rightarrow ax \rightarrow abx\) = | |
231 \(x\rightarrow bx \rightarrow abx\) is the categorified version of | |
232 \((AB|X)=(A|X)\cdot(B|AX)=(B|X)\cdot(A|BX)\). | |
233 </li> | |
234 <li>We can make plausibility assignments by enriching the inductive | |
235 category \(P^*\) over some monoidal category, e.g. the set of real numbers | |
236 (considered as a category) with its usual multiplication. <i>When we do</i>, | |
237 the identity arrows of \(P^*\) —corresponding to | |
238 deductive inferences— are assigned a value of certainty automatically. | |
239 </li> | |
240 </ul> | |
241 | |
242 | |
243 </div> | |
244 | |
245 </div> | |
246 | |
247 <div id="outline-container-2-2" class="outline-3"> | |
248 <h3 id="sec-2-2"><span class="section-number-3">2.2</span> ``Multiplicity'' is reciprocal probability </h3> | |
249 <div class="outline-text-3" id="text-2-2"> | |
250 | |
251 <p>The natural numbers have a comparatively concrete origin: they are the | |
252 result of decategorifying the category of finite sets<sup><a class="footref" name="fnr.2" href="#fn.2">2</a></sup>, or the | |
253 coequalizer of the arrows from a one-object category to a two-object | |
254 category with a single nonidentity arrow. Extensions of the set of | |
255 natural numbers— such as | |
256 the set of integers or rational numbers or real numbers— strike | |
257 me as being somewhat more abstract (however, see the Eudoxus | |
258 construction of the real numbers). | |
259 </p> | |
260 <p> | |
261 Jaynes points out that our existing choice of scale for probabilities | |
262 (i.e., the scale from 0 for impossibility to 1 for | |
263 certainty) has a degree of freedom: any monotonic function of | |
264 probability encodes the same information that probability does. Though | |
265 the resulting laws for compound probability and so on change in form | |
266 when probabilities are changed, they do not change in content. | |
267 </p> | |
268 <p> | |
269 With this in mind, it seems natural and permissible to use not <i>probability</i> but | |
270 <i>reciprocal probability</i> instead. This scale, which we might | |
271 call <i>multiplicity</i>, ranges from 1 (certainty) to | |
272 positive infinity (impossibility); higher numbers are ascribed to | |
273 less-plausible events. | |
274 </p> | |
275 <p> | |
276 In this way, the ``probability'' | |
277 associated with choosing one out of \(n\) indistinguishable choices | |
278 becomes identified with \(n\). | |
279 </p> | |
280 </div> | |
281 | |
282 </div> | |
283 | |
284 <div id="outline-container-2-3" class="outline-3"> | |
285 <h3 id="sec-2-3"><span class="section-number-3">2.3</span> Laws for multiplicity </h3> | |
286 <div class="outline-text-3" id="text-2-3"> | |
287 | |
288 <p>Jaynes derives laws of probability; either his method or his results | |
289 can be used to obtain laws for multiplicities. | |
290 </p> | |
291 <dl> | |
292 <dt>product rule</dt><dd>The product rule is unchanged: \(\xi(AB|X)=\xi(A|X)\cdot | |
293 \xi(B|AX) = \xi(B|X)\cdot \xi(A|BX)\) | |
294 </dd> | |
295 <dt>certainty</dt><dd>States of absolute certainty are assigned a multiplicity | |
296 of 1. States of absolute impossibility are assigned a | |
297 multiplicity of positive infinity. | |
298 </dd> | |
299 <dt>entropy</dt><dd>In terms of probability, entropy has the form \(S=-\sum_i | |
300 p_i \ln{p_i} = \sum_i p_i (-\ln{p_i}) = \sum_i p_i \ln{(1/p_i)} | |
301 \). Hence, in terms of multiplicity, entropy | |
302 has the form \(S = \sum_i \frac{\ln{\xi_i}}{\xi_i} \). | |
303 | |
304 <p> | |
305 Another interesting quantity is \(\exp{S}\), which behaves | |
306 multiplicitively rather than additively. \(\exp{S} = | |
307 \prod_i \exp{\frac{\ln{\xi_i}}{\xi_i}} = | |
308 \left(\exp{\ln{\xi_i}}\right)^{1/\xi_i} = \prod_i \xi_i^{1/\xi_i} \) | |
309 </p></dd> | |
310 </dl> | |
311 | |
312 | |
313 | |
314 <div id="footnotes"> | |
315 <h2 class="footnotes">Footnotes: </h2> | |
316 <div id="text-footnotes"> | |
317 <p class="footnote"><sup><a class="footnum" name="fn.1" href="#fnr.1">1</a></sup> <i>(IIIa) If a conclusion can be reasoned out in more than one way, then every possible way must lead to the same result.</i> | |
318 </p> | |
319 | |
320 <p class="footnote"><sup><a class="footnum" name="fn.2" href="#fnr.2">2</a></sup> As Baez explains. | |
321 </p> | |
322 </div> | |
323 </div> | |
324 </div> | |
325 | |
326 </div> | |
327 </div> | |
328 <div id="postamble"> | |
329 <p class="date">Date: 2011-07-09 14:19:42 EDT</p> | |
330 <p class="author">Author: Dylan Holmes</p> | |
331 <p class="creator">Org version 7.6 with Emacs version 23</p> | |
332 <a href="http://validator.w3.org/check?uri=referer">Validate XHTML 1.0</a> | |
333 </div> | |
334 </div> | |
335 </body> | |
336 </html> |