rlm@2
|
1 <?xml version="1.0" encoding="utf-8"?>
|
rlm@2
|
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
rlm@2
|
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
rlm@2
|
4 <html xmlns="http://www.w3.org/1999/xhtml"
|
rlm@2
|
5 lang="en" xml:lang="en">
|
rlm@2
|
6 <head>
|
rlm@2
|
7 <title>Synthetic Differential Geometry</title>
|
rlm@2
|
8 <meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
|
rlm@2
|
9 <meta name="generator" content="Org-mode"/>
|
rlm@2
|
10 <meta name="generated" content="2011-08-15 22:42:41 EDT"/>
|
rlm@2
|
11 <meta name="author" content="Dylan Holmes"/>
|
rlm@2
|
12 <meta name="description" content=""/>
|
rlm@2
|
13 <meta name="keywords" content=""/>
|
rlm@2
|
14 <style type="text/css">
|
rlm@2
|
15 <!--/*--><![CDATA[/*><!--*/
|
rlm@2
|
16 html { font-family: Times, serif; font-size: 12pt; }
|
rlm@2
|
17 .title { text-align: center; }
|
rlm@2
|
18 .todo { color: red; }
|
rlm@2
|
19 .done { color: green; }
|
rlm@2
|
20 .tag { background-color: #add8e6; font-weight:normal }
|
rlm@2
|
21 .target { }
|
rlm@2
|
22 .timestamp { color: #bebebe; }
|
rlm@2
|
23 .timestamp-kwd { color: #5f9ea0; }
|
rlm@2
|
24 .right {margin-left:auto; margin-right:0px; text-align:right;}
|
rlm@2
|
25 .left {margin-left:0px; margin-right:auto; text-align:left;}
|
rlm@2
|
26 .center {margin-left:auto; margin-right:auto; text-align:center;}
|
rlm@2
|
27 p.verse { margin-left: 3% }
|
rlm@2
|
28 pre {
|
rlm@2
|
29 border: 1pt solid #AEBDCC;
|
rlm@2
|
30 background-color: #F3F5F7;
|
rlm@2
|
31 padding: 5pt;
|
rlm@2
|
32 font-family: courier, monospace;
|
rlm@2
|
33 font-size: 90%;
|
rlm@2
|
34 overflow:auto;
|
rlm@2
|
35 }
|
rlm@2
|
36 table { border-collapse: collapse; }
|
rlm@2
|
37 td, th { vertical-align: top; }
|
rlm@2
|
38 th.right { text-align:center; }
|
rlm@2
|
39 th.left { text-align:center; }
|
rlm@2
|
40 th.center { text-align:center; }
|
rlm@2
|
41 td.right { text-align:right; }
|
rlm@2
|
42 td.left { text-align:left; }
|
rlm@2
|
43 td.center { text-align:center; }
|
rlm@2
|
44 dt { font-weight: bold; }
|
rlm@2
|
45 div.figure { padding: 0.5em; }
|
rlm@2
|
46 div.figure p { text-align: center; }
|
rlm@2
|
47 textarea { overflow-x: auto; }
|
rlm@2
|
48 .linenr { font-size:smaller }
|
rlm@2
|
49 .code-highlighted {background-color:#ffff00;}
|
rlm@2
|
50 .org-info-js_info-navigation { border-style:none; }
|
rlm@2
|
51 #org-info-js_console-label { font-size:10px; font-weight:bold;
|
rlm@2
|
52 white-space:nowrap; }
|
rlm@2
|
53 .org-info-js_search-highlight {background-color:#ffff00; color:#000000;
|
rlm@2
|
54 font-weight:bold; }
|
rlm@2
|
55 /*]]>*/-->
|
rlm@2
|
56 </style>
|
rlm@2
|
57 <link rel="stylesheet" type="text/css" href="../css/aurellem.css" />
|
rlm@2
|
58 <script type="text/javascript">
|
rlm@2
|
59 <!--/*--><![CDATA[/*><!--*/
|
rlm@2
|
60 function CodeHighlightOn(elem, id)
|
rlm@2
|
61 {
|
rlm@2
|
62 var target = document.getElementById(id);
|
rlm@2
|
63 if(null != target) {
|
rlm@2
|
64 elem.cacheClassElem = elem.className;
|
rlm@2
|
65 elem.cacheClassTarget = target.className;
|
rlm@2
|
66 target.className = "code-highlighted";
|
rlm@2
|
67 elem.className = "code-highlighted";
|
rlm@2
|
68 }
|
rlm@2
|
69 }
|
rlm@2
|
70 function CodeHighlightOff(elem, id)
|
rlm@2
|
71 {
|
rlm@2
|
72 var target = document.getElementById(id);
|
rlm@2
|
73 if(elem.cacheClassElem)
|
rlm@2
|
74 elem.className = elem.cacheClassElem;
|
rlm@2
|
75 if(elem.cacheClassTarget)
|
rlm@2
|
76 target.className = elem.cacheClassTarget;
|
rlm@2
|
77 }
|
rlm@2
|
78 /*]]>*///-->
|
rlm@2
|
79 </script>
|
rlm@2
|
80 <script type="text/javascript" src="../MathJax/MathJax.js">
|
rlm@2
|
81 <!--/*--><![CDATA[/*><!--*/
|
rlm@2
|
82 MathJax.Hub.Config({
|
rlm@2
|
83 // Only one of the two following lines, depending on user settings
|
rlm@2
|
84 // First allows browser-native MathML display, second forces HTML/CSS
|
rlm@2
|
85 config: ["MMLorHTML.js"], jax: ["input/TeX"],
|
rlm@2
|
86 // jax: ["input/TeX", "output/HTML-CSS"],
|
rlm@2
|
87 extensions: ["tex2jax.js","TeX/AMSmath.js","TeX/AMSsymbols.js",
|
rlm@2
|
88 "TeX/noUndefined.js"],
|
rlm@2
|
89 tex2jax: {
|
rlm@2
|
90 inlineMath: [ ["\\(","\\)"] ],
|
rlm@2
|
91 displayMath: [ ['$$','$$'], ["\\[","\\]"], ["\\begin{displaymath}","\\end{displaymath}"] ],
|
rlm@2
|
92 skipTags: ["script","noscript","style","textarea","pre","code"],
|
rlm@2
|
93 ignoreClass: "tex2jax_ignore",
|
rlm@2
|
94 processEscapes: false,
|
rlm@2
|
95 processEnvironments: true,
|
rlm@2
|
96 preview: "TeX"
|
rlm@2
|
97 },
|
rlm@2
|
98 showProcessingMessages: true,
|
rlm@2
|
99 displayAlign: "left",
|
rlm@2
|
100 displayIndent: "2em",
|
rlm@2
|
101
|
rlm@2
|
102 "HTML-CSS": {
|
rlm@2
|
103 scale: 100,
|
rlm@2
|
104 availableFonts: ["STIX","TeX"],
|
rlm@2
|
105 preferredFont: "TeX",
|
rlm@2
|
106 webFont: "TeX",
|
rlm@2
|
107 imageFont: "TeX",
|
rlm@2
|
108 showMathMenu: true,
|
rlm@2
|
109 },
|
rlm@2
|
110 MMLorHTML: {
|
rlm@2
|
111 prefer: {
|
rlm@2
|
112 MSIE: "MML",
|
rlm@2
|
113 Firefox: "MML",
|
rlm@2
|
114 Opera: "HTML",
|
rlm@2
|
115 other: "HTML"
|
rlm@2
|
116 }
|
rlm@2
|
117 }
|
rlm@2
|
118 });
|
rlm@2
|
119 /*]]>*///-->
|
rlm@2
|
120 </script>
|
rlm@2
|
121 </head>
|
rlm@2
|
122 <body>
|
rlm@2
|
123
|
rlm@2
|
124 <div id="content">
|
rlm@2
|
125
|
rlm@2
|
126
|
rlm@2
|
127
|
rlm@2
|
128 <div class="header">
|
rlm@2
|
129 <div class="float-right">
|
rlm@2
|
130 <!--
|
rlm@2
|
131 <form>
|
rlm@2
|
132 <input type="text"/><input type="submit" value="search the blog »"/>
|
rlm@2
|
133 </form>
|
rlm@2
|
134 -->
|
rlm@2
|
135 </div>
|
rlm@2
|
136
|
rlm@2
|
137 <h1>aurellem <em>☉</em></h1>
|
rlm@2
|
138 <ul class="nav">
|
rlm@2
|
139 <li><a href="/">read the blog »</a></li>
|
rlm@2
|
140 <!-- li><a href="#">learn about us »</a></li-->
|
rlm@2
|
141 </ul>
|
rlm@2
|
142 </div>
|
rlm@2
|
143
|
rlm@2
|
144 <h1 class="title">Synthetic Differential Geometry</h1>
|
rlm@2
|
145 <div class="author">Written by <author>Dylan Holmes</author></div>
|
rlm@2
|
146
|
rlm@2
|
147
|
rlm@2
|
148
|
rlm@2
|
149
|
rlm@2
|
150
|
rlm@2
|
151
|
rlm@2
|
152 <p>
|
rlm@2
|
153 (My notes on Anders Kock's <i>Synthetic Differential Geometry</i>)
|
rlm@2
|
154 </p>
|
rlm@2
|
155
|
rlm@2
|
156 <div id="table-of-contents">
|
rlm@2
|
157 <h2>Table of Contents</h2>
|
rlm@2
|
158 <div id="text-table-of-contents">
|
rlm@2
|
159 <ul>
|
rlm@2
|
160 <li><a href="#sec-1">1 Revisiting the real line </a>
|
rlm@2
|
161 <ul>
|
rlm@2
|
162 <li><a href="#sec-1-1">1.1 The first anti-euclidean axiom </a></li>
|
rlm@2
|
163 <li><a href="#sec-1-2">1.2 The first axiom \(\ldots\) in terms of arrows </a></li>
|
rlm@2
|
164 <li><a href="#sec-1-3">1.3 Ex </a></li>
|
rlm@2
|
165 </ul>
|
rlm@2
|
166 </li>
|
rlm@2
|
167 </ul>
|
rlm@2
|
168 </div>
|
rlm@2
|
169 </div>
|
rlm@2
|
170
|
rlm@2
|
171 <div id="outline-container-1" class="outline-2">
|
rlm@2
|
172 <h2 id="sec-1"><span class="section-number-2">1</span> Revisiting the real line </h2>
|
rlm@2
|
173 <div class="outline-text-2" id="text-1">
|
rlm@2
|
174
|
rlm@2
|
175
|
rlm@2
|
176 <p>
|
rlm@2
|
177 <b>Lines</b>, the kind which Euclid talked about, each constitute a commutative
|
rlm@2
|
178 ring: you choose any two points on the line to be 0 and 1, then add
|
rlm@2
|
179 and multiply as if you were dealing with real numbers \(\mathbb{R}\).
|
rlm@2
|
180 </p>
|
rlm@2
|
181 <p>
|
rlm@2
|
182 Euclid moreover uses the axiom that for any two points, <i>either</i> they are the
|
rlm@2
|
183 same point <i>or</i> there is a unique line between them. Algebraically,
|
rlm@2
|
184 this amounts to saying that each line is not only a commutative ring
|
rlm@2
|
185 but a <b>field</b>, as well. This marks our first departure from euclidean
|
rlm@2
|
186 geometry, as our first axiom denies that each line is a field.
|
rlm@2
|
187 </p>
|
rlm@2
|
188
|
rlm@2
|
189
|
rlm@2
|
190 </div>
|
rlm@2
|
191
|
rlm@2
|
192 <div id="outline-container-1-1" class="outline-3">
|
rlm@2
|
193 <h3 id="sec-1-1"><span class="section-number-3">1.1</span> The first anti-euclidean axiom </h3>
|
rlm@2
|
194 <div class="outline-text-3" id="text-1-1">
|
rlm@2
|
195
|
rlm@2
|
196 <p>A point in a ring is called <b>nilpotent</b> if its square is
|
rlm@2
|
197 zero. Normally (that is, in \(\mathbb{R}^n\)), only \(0\) is
|
rlm@2
|
198 nilpotent. Here, as a consequence of the following axiom, there will
|
rlm@2
|
199 exist other elements that are nilpotent. These elements will
|
rlm@2
|
200 encapsulate our intuitive idea of “infinitesimally small” numbers.
|
rlm@2
|
201 </p>
|
rlm@2
|
202 <blockquote>
|
rlm@2
|
203
|
rlm@2
|
204 <p><b>Axiom 1:</b> Let \(R\) be the line, considered as a commutative ring, and
|
rlm@2
|
205 let \(D\subset R\) be the set of nilpotent elements on the line. Then for any
|
rlm@2
|
206 morphism \(g:D\rightarrow R\), there exists a unique \(b\in R\) such that
|
rlm@2
|
207 </p>
|
rlm@2
|
208
|
rlm@2
|
209
|
rlm@2
|
210 \(\forall d\in D, g(d) = g(0)+ b\cdot d\)
|
rlm@2
|
211
|
rlm@2
|
212 <p>
|
rlm@2
|
213 Intuitively, this unique \(b\) is the slope of the function \(g\) near
|
rlm@2
|
214 zero. Because every morphism \(g\) has exactly one such \(b\), we have the
|
rlm@2
|
215 following results:
|
rlm@2
|
216 </p>
|
rlm@2
|
217 <ol>
|
rlm@2
|
218 <li>The set \(D\) of nilpotent elements contains more than
|
rlm@2
|
219 just 0. Indeed, suppose the contrary: if \(D=\{0\}\), then for any \(g\), <i>every</i> \(b\in R\) has the
|
rlm@2
|
220 property described above;—\(b\) isn't uniquely defined.
|
rlm@2
|
221 </li>
|
rlm@2
|
222 <li>Pick \(b_1\) and \(b_2\) in \(R\). If every nilpotent \(d\) satisfies \(d\cdot
|
rlm@2
|
223 b_1 = d\cdot b_2\), then \(b_1\) and \(b_2\) are equal.
|
rlm@2
|
224 </li>
|
rlm@2
|
225 </ol>
|
rlm@2
|
226
|
rlm@2
|
227
|
rlm@2
|
228 </div>
|
rlm@2
|
229
|
rlm@2
|
230 </div>
|
rlm@2
|
231
|
rlm@2
|
232 <div id="outline-container-1-2" class="outline-3">
|
rlm@2
|
233 <h3 id="sec-1-2"><span class="section-number-3">1.2</span> The first axiom \(\ldots\) in terms of arrows </h3>
|
rlm@2
|
234 <div class="outline-text-3" id="text-1-2">
|
rlm@2
|
235
|
rlm@2
|
236
|
rlm@2
|
237 <p>
|
rlm@2
|
238 Define \(\xi:R\times R\rightarrow R^D\) by \(\xi:(a,b)\mapsto (d\mapsto
|
rlm@2
|
239 a+b\cdot d)\). The first axiom is equivalent to the statement
|
rlm@2
|
240 “ξ is invertible (i.e., a bijection)”
|
rlm@2
|
241 </p>
|
rlm@2
|
242 <p>
|
rlm@2
|
243 We give \(R\times R\) the structure of an \(R\)-algebra by defining
|
rlm@2
|
244 multiplication: \( (a_1,b_1)\star(a_2,b_2) = (a_1\cdot a_2,\quad
|
rlm@2
|
245 a_1\cdot b_2 + a_2\cdot b_1)\). This is called <b>dual-numbers multiplication</b>, and is similar to muliplication of complex numbers.
|
rlm@2
|
246 </p>
|
rlm@2
|
247
|
rlm@2
|
248 </div>
|
rlm@2
|
249
|
rlm@2
|
250 </div>
|
rlm@2
|
251
|
rlm@2
|
252 <div id="outline-container-1-3" class="outline-3">
|
rlm@2
|
253 <h3 id="sec-1-3"><span class="section-number-3">1.3</span> Ex </h3>
|
rlm@2
|
254 <div class="outline-text-3" id="text-1-3">
|
rlm@2
|
255
|
rlm@2
|
256 <ol>
|
rlm@2
|
257 <li>If \(a\) and \(b\) are nilpotent, then \(ab\) is nilpotent.
|
rlm@2
|
258 </li>
|
rlm@2
|
259 <li>Even if \(a\) and \(b\) are nilpotent, the sum \(a+b\) may not be.
|
rlm@2
|
260 </li>
|
rlm@2
|
261 <li>Even if \(a+b\) is nilpotent, either summand \(a\), \(b\) may not be.
|
rlm@2
|
262 </li>
|
rlm@2
|
263 <li>
|
rlm@2
|
264 </li>
|
rlm@2
|
265 </ol>
|
rlm@2
|
266
|
rlm@2
|
267
|
rlm@2
|
268
|
rlm@2
|
269 </blockquote>
|
rlm@2
|
270
|
rlm@2
|
271 </div>
|
rlm@2
|
272 </div>
|
rlm@2
|
273 </div>
|
rlm@2
|
274 <div id="postamble">
|
rlm@2
|
275 <p class="date">Date: 2011-08-15 22:42:41 EDT</p>
|
rlm@2
|
276 <p class="author">Author: Dylan Holmes</p>
|
rlm@2
|
277 <p class="creator">Org version 7.6 with Emacs version 23</p>
|
rlm@2
|
278 <a href="http://validator.w3.org/check?uri=referer">Validate XHTML 1.0</a>
|
rlm@2
|
279 </div>
|
rlm@2
|
280 </div>
|
rlm@2
|
281 </body>
|
rlm@2
|
282 </html>
|