annotate categorical/monad.org @ 6:b2f55bcf6853

fixed comments
author Robert McIntyre <rlm@mit.edu>
date Fri, 28 Oct 2011 04:56:15 -0700
parents b4de894a1e2e
children
rev   line source
rlm@2 1 #+TITLE: Monads in CS and Math
rlm@2 2 #+BEGIN_HTML
rlm@2 3 <h1>
rlm@2 4 {{{TITLE}}}
rlm@2 5 </h1>
rlm@2 6 #+END_HTML
rlm@2 7
rlm@2 8 The purpose of a /monad/ is to introduce a new data type into your
rlm@2 9 language and to integrate it with existing types; a monad augments a
rlm@2 10 pre-existing data type $A$, creating a new type $B$.
rlm@2 11
rlm@2 12 When describing monads, I will use the following terminology:
rlm@2 13 - Values of type $A$ are called *ordinary values*, because they belong
rlm@2 14 to the pre-existing data type.
rlm@2 15 - Values of type $B$ are called *monadic values*, because they
rlm@2 16 belong to the type introduced by the monad.
rlm@2 17 - A function $A\rightarrow B$ is called a *monadic function*; such
rlm@2 18 functions accept regular values as input and return monadic values.
rlm@2 19
rlm@2 20
rlm@2 21
rlm@2 22 A monad consists of
rlm@2 23 two components for achieving this purpose:
rlm@2 24
rlm@2 25 - A function that converts ordinary values into monadic values ::
rlm@2 26 First, in order to create a new data type, each monad has an
rlm@2 27 /upgrade function/ which systematically adds structure to values of
rlm@2 28 the existing data type, $A$. Because the upgrade function produces
rlm@2 29 enhanced values in a systematic way, the enhanced values constitute
rlm@2 30 a sort of new data type, $B$.
rlm@2 31
rlm@2 32 #+begin_quote
rlm@2 33 $\text{upgrade}:A\rightarrow B$
rlm@2 34 #+end_quote
rlm@2 35
rlm@2 36 - A function that enables monadic functions to accept monadic values :: Second, each monad has a /pipe function/ which is a
rlm@2 37 protocol for combining a monadic function and a monadic value to
rlm@2 38 produce a monadic value. The pipe function facilitates composition:
rlm@2 39 notice that a collection of monadic functions $A\rightarrow B$ is composable only if they have been modified by the
rlm@2 40 pipe function to become functions of type $B\rightarrow B$, otherwise their input and output types do not match.
rlm@2 41 #+begin_quote
rlm@2 42 $\text{pipe}:B\times B^A\rightarrow B$
rlm@2 43 #+end_quote
rlm@2 44
rlm@2 45 #+srcname: intro
rlm@2 46 #+begin_src clojure :results silent
rlm@2 47 (ns categorical.monad)
rlm@2 48 (use 'clojure.contrib.monads)
rlm@2 49 #+end_src
rlm@2 50
rlm@2 51
rlm@2 52 * Examples of monads
rlm@2 53 ** The nondeterministic monad
rlm@2 54
rlm@2 55 We'll implement nondeterministic programming by defining a monad =amb=
rlm@2 56 that transforms ordinary deterministic functions into functions that ``ambiguously'' return zero or more
rlm@2 57 values.
rlm@2 58
rlm@2 59 #+srcname: stuff
rlm@2 60 #+begin_src clojure :results silent
rlm@2 61 (in-ns 'categorical.monad)
rlm@2 62
rlm@2 63 ;; To implement nondeterministic programs, we'll use a lazy seq to represent a value which may be any one of the members of seq.
rlm@2 64
rlm@2 65 (defmonad amb
rlm@2 66 [
rlm@2 67 m-result (fn[& vals] (cons 'amb vals))
rlm@2 68 m-bind (fn[amb-seq f] (cons 'amb (map f (rest amb-seq))))
rlm@2 69 ]
rlm@2 70 )
rlm@2 71 #+end_src
rlm@2 72
rlm@2 73 #+begin_src clojure :results silent :tangle monad.clj :noweb yes
rlm@2 74 <<intro>>
rlm@2 75 <<stuff>>
rlm@2 76 #+end_src