annotate categorical/synthetic.html @ 3:44d3dc936f6a

moved backup files
author Robert McIntyre <rlm@mit.edu>
date Fri, 28 Oct 2011 00:06:37 -0700
parents b4de894a1e2e
children
rev   line source
rlm@2 1 <?xml version="1.0" encoding="utf-8"?>
rlm@2 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
rlm@2 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
rlm@2 4 <html xmlns="http://www.w3.org/1999/xhtml"
rlm@2 5 lang="en" xml:lang="en">
rlm@2 6 <head>
rlm@2 7 <title>Synthetic Differential Geometry</title>
rlm@2 8 <meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
rlm@2 9 <meta name="generator" content="Org-mode"/>
rlm@2 10 <meta name="generated" content="2011-08-15 22:42:41 EDT"/>
rlm@2 11 <meta name="author" content="Dylan Holmes"/>
rlm@2 12 <meta name="description" content=""/>
rlm@2 13 <meta name="keywords" content=""/>
rlm@2 14 <style type="text/css">
rlm@2 15 <!--/*--><![CDATA[/*><!--*/
rlm@2 16 html { font-family: Times, serif; font-size: 12pt; }
rlm@2 17 .title { text-align: center; }
rlm@2 18 .todo { color: red; }
rlm@2 19 .done { color: green; }
rlm@2 20 .tag { background-color: #add8e6; font-weight:normal }
rlm@2 21 .target { }
rlm@2 22 .timestamp { color: #bebebe; }
rlm@2 23 .timestamp-kwd { color: #5f9ea0; }
rlm@2 24 .right {margin-left:auto; margin-right:0px; text-align:right;}
rlm@2 25 .left {margin-left:0px; margin-right:auto; text-align:left;}
rlm@2 26 .center {margin-left:auto; margin-right:auto; text-align:center;}
rlm@2 27 p.verse { margin-left: 3% }
rlm@2 28 pre {
rlm@2 29 border: 1pt solid #AEBDCC;
rlm@2 30 background-color: #F3F5F7;
rlm@2 31 padding: 5pt;
rlm@2 32 font-family: courier, monospace;
rlm@2 33 font-size: 90%;
rlm@2 34 overflow:auto;
rlm@2 35 }
rlm@2 36 table { border-collapse: collapse; }
rlm@2 37 td, th { vertical-align: top; }
rlm@2 38 th.right { text-align:center; }
rlm@2 39 th.left { text-align:center; }
rlm@2 40 th.center { text-align:center; }
rlm@2 41 td.right { text-align:right; }
rlm@2 42 td.left { text-align:left; }
rlm@2 43 td.center { text-align:center; }
rlm@2 44 dt { font-weight: bold; }
rlm@2 45 div.figure { padding: 0.5em; }
rlm@2 46 div.figure p { text-align: center; }
rlm@2 47 textarea { overflow-x: auto; }
rlm@2 48 .linenr { font-size:smaller }
rlm@2 49 .code-highlighted {background-color:#ffff00;}
rlm@2 50 .org-info-js_info-navigation { border-style:none; }
rlm@2 51 #org-info-js_console-label { font-size:10px; font-weight:bold;
rlm@2 52 white-space:nowrap; }
rlm@2 53 .org-info-js_search-highlight {background-color:#ffff00; color:#000000;
rlm@2 54 font-weight:bold; }
rlm@2 55 /*]]>*/-->
rlm@2 56 </style>
rlm@2 57 <link rel="stylesheet" type="text/css" href="../css/aurellem.css" />
rlm@2 58 <script type="text/javascript">
rlm@2 59 <!--/*--><![CDATA[/*><!--*/
rlm@2 60 function CodeHighlightOn(elem, id)
rlm@2 61 {
rlm@2 62 var target = document.getElementById(id);
rlm@2 63 if(null != target) {
rlm@2 64 elem.cacheClassElem = elem.className;
rlm@2 65 elem.cacheClassTarget = target.className;
rlm@2 66 target.className = "code-highlighted";
rlm@2 67 elem.className = "code-highlighted";
rlm@2 68 }
rlm@2 69 }
rlm@2 70 function CodeHighlightOff(elem, id)
rlm@2 71 {
rlm@2 72 var target = document.getElementById(id);
rlm@2 73 if(elem.cacheClassElem)
rlm@2 74 elem.className = elem.cacheClassElem;
rlm@2 75 if(elem.cacheClassTarget)
rlm@2 76 target.className = elem.cacheClassTarget;
rlm@2 77 }
rlm@2 78 /*]]>*///-->
rlm@2 79 </script>
rlm@2 80 <script type="text/javascript" src="../MathJax/MathJax.js">
rlm@2 81 <!--/*--><![CDATA[/*><!--*/
rlm@2 82 MathJax.Hub.Config({
rlm@2 83 // Only one of the two following lines, depending on user settings
rlm@2 84 // First allows browser-native MathML display, second forces HTML/CSS
rlm@2 85 config: ["MMLorHTML.js"], jax: ["input/TeX"],
rlm@2 86 // jax: ["input/TeX", "output/HTML-CSS"],
rlm@2 87 extensions: ["tex2jax.js","TeX/AMSmath.js","TeX/AMSsymbols.js",
rlm@2 88 "TeX/noUndefined.js"],
rlm@2 89 tex2jax: {
rlm@2 90 inlineMath: [ ["\\(","\\)"] ],
rlm@2 91 displayMath: [ ['$$','$$'], ["\\[","\\]"], ["\\begin{displaymath}","\\end{displaymath}"] ],
rlm@2 92 skipTags: ["script","noscript","style","textarea","pre","code"],
rlm@2 93 ignoreClass: "tex2jax_ignore",
rlm@2 94 processEscapes: false,
rlm@2 95 processEnvironments: true,
rlm@2 96 preview: "TeX"
rlm@2 97 },
rlm@2 98 showProcessingMessages: true,
rlm@2 99 displayAlign: "left",
rlm@2 100 displayIndent: "2em",
rlm@2 101
rlm@2 102 "HTML-CSS": {
rlm@2 103 scale: 100,
rlm@2 104 availableFonts: ["STIX","TeX"],
rlm@2 105 preferredFont: "TeX",
rlm@2 106 webFont: "TeX",
rlm@2 107 imageFont: "TeX",
rlm@2 108 showMathMenu: true,
rlm@2 109 },
rlm@2 110 MMLorHTML: {
rlm@2 111 prefer: {
rlm@2 112 MSIE: "MML",
rlm@2 113 Firefox: "MML",
rlm@2 114 Opera: "HTML",
rlm@2 115 other: "HTML"
rlm@2 116 }
rlm@2 117 }
rlm@2 118 });
rlm@2 119 /*]]>*///-->
rlm@2 120 </script>
rlm@2 121 </head>
rlm@2 122 <body>
rlm@2 123
rlm@2 124 <div id="content">
rlm@2 125
rlm@2 126
rlm@2 127
rlm@2 128 <div class="header">
rlm@2 129 <div class="float-right">
rlm@2 130 <!--
rlm@2 131 <form>
rlm@2 132 <input type="text"/><input type="submit" value="search the blog &raquo;"/>
rlm@2 133 </form>
rlm@2 134 -->
rlm@2 135 </div>
rlm@2 136
rlm@2 137 <h1>aurellem <em>&#x2609;</em></h1>
rlm@2 138 <ul class="nav">
rlm@2 139 <li><a href="/">read the blog &raquo;</a></li>
rlm@2 140 <!-- li><a href="#">learn about us &raquo;</a></li-->
rlm@2 141 </ul>
rlm@2 142 </div>
rlm@2 143
rlm@2 144 <h1 class="title">Synthetic Differential Geometry</h1>
rlm@2 145 <div class="author">Written by <author>Dylan Holmes</author></div>
rlm@2 146
rlm@2 147
rlm@2 148
rlm@2 149
rlm@2 150
rlm@2 151
rlm@2 152 <p>
rlm@2 153 (My notes on Anders Kock's <i>Synthetic Differential Geometry</i>)
rlm@2 154 </p>
rlm@2 155
rlm@2 156 <div id="table-of-contents">
rlm@2 157 <h2>Table of Contents</h2>
rlm@2 158 <div id="text-table-of-contents">
rlm@2 159 <ul>
rlm@2 160 <li><a href="#sec-1">1 Revisiting the real line </a>
rlm@2 161 <ul>
rlm@2 162 <li><a href="#sec-1-1">1.1 The first anti-euclidean axiom </a></li>
rlm@2 163 <li><a href="#sec-1-2">1.2 The first axiom \(\ldots\) in terms of arrows </a></li>
rlm@2 164 <li><a href="#sec-1-3">1.3 Ex </a></li>
rlm@2 165 </ul>
rlm@2 166 </li>
rlm@2 167 </ul>
rlm@2 168 </div>
rlm@2 169 </div>
rlm@2 170
rlm@2 171 <div id="outline-container-1" class="outline-2">
rlm@2 172 <h2 id="sec-1"><span class="section-number-2">1</span> Revisiting the real line </h2>
rlm@2 173 <div class="outline-text-2" id="text-1">
rlm@2 174
rlm@2 175
rlm@2 176 <p>
rlm@2 177 <b>Lines</b>, the kind which Euclid talked about, each constitute a commutative
rlm@2 178 ring: you choose any two points on the line to be 0 and 1, then add
rlm@2 179 and multiply as if you were dealing with real numbers \(\mathbb{R}\).
rlm@2 180 </p>
rlm@2 181 <p>
rlm@2 182 Euclid moreover uses the axiom that for any two points, <i>either</i> they are the
rlm@2 183 same point <i>or</i> there is a unique line between them. Algebraically,
rlm@2 184 this amounts to saying that each line is not only a commutative ring
rlm@2 185 but a <b>field</b>, as well. This marks our first departure from euclidean
rlm@2 186 geometry, as our first axiom denies that each line is a field.
rlm@2 187 </p>
rlm@2 188
rlm@2 189
rlm@2 190 </div>
rlm@2 191
rlm@2 192 <div id="outline-container-1-1" class="outline-3">
rlm@2 193 <h3 id="sec-1-1"><span class="section-number-3">1.1</span> The first anti-euclidean axiom </h3>
rlm@2 194 <div class="outline-text-3" id="text-1-1">
rlm@2 195
rlm@2 196 <p>A point in a ring is called <b>nilpotent</b> if its square is
rlm@2 197 zero. Normally (that is, in \(\mathbb{R}^n\)), only \(0\) is
rlm@2 198 nilpotent. Here, as a consequence of the following axiom, there will
rlm@2 199 exist other elements that are nilpotent. These elements will
rlm@2 200 encapsulate our intuitive idea of &ldquo;infinitesimally small&rdquo; numbers.
rlm@2 201 </p>
rlm@2 202 <blockquote>
rlm@2 203
rlm@2 204 <p><b>Axiom 1:</b> Let \(R\) be the line, considered as a commutative ring, and
rlm@2 205 let \(D\subset R\) be the set of nilpotent elements on the line. Then for any
rlm@2 206 morphism \(g:D\rightarrow R\), there exists a unique \(b\in R\) such that
rlm@2 207 </p>
rlm@2 208
rlm@2 209
rlm@2 210 \(\forall d\in D, g(d) = g(0)+ b\cdot d\)
rlm@2 211
rlm@2 212 <p>
rlm@2 213 Intuitively, this unique \(b\) is the slope of the function \(g\) near
rlm@2 214 zero. Because every morphism \(g\) has exactly one such \(b\), we have the
rlm@2 215 following results:
rlm@2 216 </p>
rlm@2 217 <ol>
rlm@2 218 <li>The set \(D\) of nilpotent elements contains more than
rlm@2 219 just 0. Indeed, suppose the contrary: if \(D=\{0\}\), then for any \(g\), <i>every</i> \(b\in R\) has the
rlm@2 220 property described above;&mdash;\(b\) isn't uniquely defined.
rlm@2 221 </li>
rlm@2 222 <li>Pick \(b_1\) and \(b_2\) in \(R\). If every nilpotent \(d\) satisfies \(d\cdot
rlm@2 223 b_1 = d\cdot b_2\), then \(b_1\) and \(b_2\) are equal.
rlm@2 224 </li>
rlm@2 225 </ol>
rlm@2 226
rlm@2 227
rlm@2 228 </div>
rlm@2 229
rlm@2 230 </div>
rlm@2 231
rlm@2 232 <div id="outline-container-1-2" class="outline-3">
rlm@2 233 <h3 id="sec-1-2"><span class="section-number-3">1.2</span> The first axiom \(\ldots\) in terms of arrows </h3>
rlm@2 234 <div class="outline-text-3" id="text-1-2">
rlm@2 235
rlm@2 236
rlm@2 237 <p>
rlm@2 238 Define \(\xi:R\times R\rightarrow R^D\) by \(\xi:(a,b)\mapsto (d\mapsto
rlm@2 239 a+b\cdot d)\). The first axiom is equivalent to the statement
rlm@2 240 &ldquo;&xi; is invertible (i.e., a bijection)&rdquo;
rlm@2 241 </p>
rlm@2 242 <p>
rlm@2 243 We give \(R\times R\) the structure of an \(R\)-algebra by defining
rlm@2 244 multiplication: \( (a_1,b_1)\star(a_2,b_2) = (a_1\cdot a_2,\quad
rlm@2 245 a_1\cdot b_2 + a_2\cdot b_1)\). This is called <b>dual-numbers multiplication</b>, and is similar to muliplication of complex numbers.
rlm@2 246 </p>
rlm@2 247
rlm@2 248 </div>
rlm@2 249
rlm@2 250 </div>
rlm@2 251
rlm@2 252 <div id="outline-container-1-3" class="outline-3">
rlm@2 253 <h3 id="sec-1-3"><span class="section-number-3">1.3</span> Ex </h3>
rlm@2 254 <div class="outline-text-3" id="text-1-3">
rlm@2 255
rlm@2 256 <ol>
rlm@2 257 <li>If \(a\) and \(b\) are nilpotent, then \(ab\) is nilpotent.
rlm@2 258 </li>
rlm@2 259 <li>Even if \(a\) and \(b\) are nilpotent, the sum \(a+b\) may not be.
rlm@2 260 </li>
rlm@2 261 <li>Even if \(a+b\) is nilpotent, either summand \(a\), \(b\) may not be.
rlm@2 262 </li>
rlm@2 263 <li>
rlm@2 264 </li>
rlm@2 265 </ol>
rlm@2 266
rlm@2 267
rlm@2 268
rlm@2 269 </blockquote>
rlm@2 270
rlm@2 271 </div>
rlm@2 272 </div>
rlm@2 273 </div>
rlm@2 274 <div id="postamble">
rlm@2 275 <p class="date">Date: 2011-08-15 22:42:41 EDT</p>
rlm@2 276 <p class="author">Author: Dylan Holmes</p>
rlm@2 277 <p class="creator">Org version 7.6 with Emacs version 23</p>
rlm@2 278 <a href="http://validator.w3.org/check?uri=referer">Validate XHTML 1.0</a>
rlm@2 279 </div>
rlm@2 280 </div>
rlm@2 281 </body>
rlm@2 282 </html>