rlm@2
|
1 <?xml version="1.0" encoding="iso-8859-1"?>
|
rlm@2
|
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
rlm@2
|
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
rlm@2
|
4 <html xmlns="http://www.w3.org/1999/xhtml"
|
rlm@2
|
5 lang="en" xml:lang="en">
|
rlm@2
|
6 <head>
|
rlm@2
|
7 <title>Categorification of Plausible Reasoning</title>
|
rlm@2
|
8 <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"/>
|
rlm@2
|
9 <meta name="generator" content="Org-mode"/>
|
rlm@2
|
10 <meta name="generated" content="2011-07-09 14:19:42 EDT"/>
|
rlm@2
|
11 <meta name="author" content="Dylan Holmes"/>
|
rlm@2
|
12 <meta name="description" content=""/>
|
rlm@2
|
13 <meta name="keywords" content=""/>
|
rlm@2
|
14 <style type="text/css">
|
rlm@2
|
15 <!--/*--><![CDATA[/*><!--*/
|
rlm@2
|
16 html { font-family: Times, serif; font-size: 12pt; }
|
rlm@2
|
17 .title { text-align: center; }
|
rlm@2
|
18 .todo { color: red; }
|
rlm@2
|
19 .done { color: green; }
|
rlm@2
|
20 .tag { background-color: #add8e6; font-weight:normal }
|
rlm@2
|
21 .target { }
|
rlm@2
|
22 .timestamp { color: #bebebe; }
|
rlm@2
|
23 .timestamp-kwd { color: #5f9ea0; }
|
rlm@2
|
24 .right {margin-left:auto; margin-right:0px; text-align:right;}
|
rlm@2
|
25 .left {margin-left:0px; margin-right:auto; text-align:left;}
|
rlm@2
|
26 .center {margin-left:auto; margin-right:auto; text-align:center;}
|
rlm@2
|
27 p.verse { margin-left: 3% }
|
rlm@2
|
28 pre {
|
rlm@2
|
29 border: 1pt solid #AEBDCC;
|
rlm@2
|
30 background-color: #F3F5F7;
|
rlm@2
|
31 padding: 5pt;
|
rlm@2
|
32 font-family: courier, monospace;
|
rlm@2
|
33 font-size: 90%;
|
rlm@2
|
34 overflow:auto;
|
rlm@2
|
35 }
|
rlm@2
|
36 table { border-collapse: collapse; }
|
rlm@2
|
37 td, th { vertical-align: top; }
|
rlm@2
|
38 th.right { text-align:center; }
|
rlm@2
|
39 th.left { text-align:center; }
|
rlm@2
|
40 th.center { text-align:center; }
|
rlm@2
|
41 td.right { text-align:right; }
|
rlm@2
|
42 td.left { text-align:left; }
|
rlm@2
|
43 td.center { text-align:center; }
|
rlm@2
|
44 dt { font-weight: bold; }
|
rlm@2
|
45 div.figure { padding: 0.5em; }
|
rlm@2
|
46 div.figure p { text-align: center; }
|
rlm@2
|
47 textarea { overflow-x: auto; }
|
rlm@2
|
48 .linenr { font-size:smaller }
|
rlm@2
|
49 .code-highlighted {background-color:#ffff00;}
|
rlm@2
|
50 .org-info-js_info-navigation { border-style:none; }
|
rlm@2
|
51 #org-info-js_console-label { font-size:10px; font-weight:bold;
|
rlm@2
|
52 white-space:nowrap; }
|
rlm@2
|
53 .org-info-js_search-highlight {background-color:#ffff00; color:#000000;
|
rlm@2
|
54 font-weight:bold; }
|
rlm@2
|
55 /*]]>*/-->
|
rlm@2
|
56 </style>
|
rlm@2
|
57 <script type="text/javascript">
|
rlm@2
|
58 <!--/*--><![CDATA[/*><!--*/
|
rlm@2
|
59 function CodeHighlightOn(elem, id)
|
rlm@2
|
60 {
|
rlm@2
|
61 var target = document.getElementById(id);
|
rlm@2
|
62 if(null != target) {
|
rlm@2
|
63 elem.cacheClassElem = elem.className;
|
rlm@2
|
64 elem.cacheClassTarget = target.className;
|
rlm@2
|
65 target.className = "code-highlighted";
|
rlm@2
|
66 elem.className = "code-highlighted";
|
rlm@2
|
67 }
|
rlm@2
|
68 }
|
rlm@2
|
69 function CodeHighlightOff(elem, id)
|
rlm@2
|
70 {
|
rlm@2
|
71 var target = document.getElementById(id);
|
rlm@2
|
72 if(elem.cacheClassElem)
|
rlm@2
|
73 elem.className = elem.cacheClassElem;
|
rlm@2
|
74 if(elem.cacheClassTarget)
|
rlm@2
|
75 target.className = elem.cacheClassTarget;
|
rlm@2
|
76 }
|
rlm@2
|
77 /*]]>*///-->
|
rlm@2
|
78 </script>
|
rlm@2
|
79 <script type="text/javascript" src="../MathJax/MathJax.js">
|
rlm@2
|
80 <!--/*--><![CDATA[/*><!--*/
|
rlm@2
|
81 MathJax.Hub.Config({
|
rlm@2
|
82 // Only one of the two following lines, depending on user settings
|
rlm@2
|
83 // First allows browser-native MathML display, second forces HTML/CSS
|
rlm@2
|
84 config: ["MMLorHTML.js"], jax: ["input/TeX"],
|
rlm@2
|
85 // jax: ["input/TeX", "output/HTML-CSS"],
|
rlm@2
|
86 extensions: ["tex2jax.js","TeX/AMSmath.js","TeX/AMSsymbols.js",
|
rlm@2
|
87 "TeX/noUndefined.js"],
|
rlm@2
|
88 tex2jax: {
|
rlm@2
|
89 inlineMath: [ ["\\(","\\)"] ],
|
rlm@2
|
90 displayMath: [ ['$$','$$'], ["\\[","\\]"], ["\\begin{displaymath}","\\end{displaymath}"] ],
|
rlm@2
|
91 skipTags: ["script","noscript","style","textarea","pre","code"],
|
rlm@2
|
92 ignoreClass: "tex2jax_ignore",
|
rlm@2
|
93 processEscapes: false,
|
rlm@2
|
94 processEnvironments: true,
|
rlm@2
|
95 preview: "TeX"
|
rlm@2
|
96 },
|
rlm@2
|
97 showProcessingMessages: true,
|
rlm@2
|
98 displayAlign: "left",
|
rlm@2
|
99 displayIndent: "2em",
|
rlm@2
|
100
|
rlm@2
|
101 "HTML-CSS": {
|
rlm@2
|
102 scale: 100,
|
rlm@2
|
103 availableFonts: ["STIX","TeX"],
|
rlm@2
|
104 preferredFont: "TeX",
|
rlm@2
|
105 webFont: "TeX",
|
rlm@2
|
106 imageFont: "TeX",
|
rlm@2
|
107 showMathMenu: true,
|
rlm@2
|
108 },
|
rlm@2
|
109 MMLorHTML: {
|
rlm@2
|
110 prefer: {
|
rlm@2
|
111 MSIE: "MML",
|
rlm@2
|
112 Firefox: "MML",
|
rlm@2
|
113 Opera: "HTML",
|
rlm@2
|
114 other: "HTML"
|
rlm@2
|
115 }
|
rlm@2
|
116 }
|
rlm@2
|
117 });
|
rlm@2
|
118 /*]]>*///-->
|
rlm@2
|
119 </script>
|
rlm@2
|
120 </head>
|
rlm@2
|
121 <body>
|
rlm@2
|
122 <div id="content">
|
rlm@2
|
123
|
rlm@2
|
124
|
rlm@2
|
125
|
rlm@2
|
126
|
rlm@2
|
127 <div id="table-of-contents">
|
rlm@2
|
128 <h2>Table of Contents</h2>
|
rlm@2
|
129 <div id="text-table-of-contents">
|
rlm@2
|
130 <ul>
|
rlm@2
|
131 <li><a href="#sec-1">1 Deductive and inductive posets </a>
|
rlm@2
|
132 <ul>
|
rlm@2
|
133 <li><a href="#sec-1-1">1.1 Definition </a></li>
|
rlm@2
|
134 <li><a href="#sec-1-2">1.2 A canonical map from deductive posets to inductive posets </a></li>
|
rlm@2
|
135 </ul>
|
rlm@2
|
136 </li>
|
rlm@2
|
137 <li><a href="#sec-2">2 Assigning plausibilities to inductive posets </a>
|
rlm@2
|
138 <ul>
|
rlm@2
|
139 <li><a href="#sec-2-1">2.1 Consistent reasoning as a commutative diagram </a></li>
|
rlm@2
|
140 <li><a href="#sec-2-2">2.2 ``Multiplicity'' is reciprocal probability </a></li>
|
rlm@2
|
141 <li><a href="#sec-2-3">2.3 Laws for multiplicity </a></li>
|
rlm@2
|
142 </ul>
|
rlm@2
|
143 </li>
|
rlm@2
|
144 </ul>
|
rlm@2
|
145 </div>
|
rlm@2
|
146 </div>
|
rlm@2
|
147
|
rlm@2
|
148 <div id="outline-container-1" class="outline-2">
|
rlm@2
|
149 <h2 id="sec-1"><span class="section-number-2">1</span> Deductive and inductive posets </h2>
|
rlm@2
|
150 <div class="outline-text-2" id="text-1">
|
rlm@2
|
151
|
rlm@2
|
152
|
rlm@2
|
153
|
rlm@2
|
154 </div>
|
rlm@2
|
155
|
rlm@2
|
156 <div id="outline-container-1-1" class="outline-3">
|
rlm@2
|
157 <h3 id="sec-1-1"><span class="section-number-3">1.1</span> Definition </h3>
|
rlm@2
|
158 <div class="outline-text-3" id="text-1-1">
|
rlm@2
|
159
|
rlm@2
|
160 <p>If you have a collection \(P\) of logical propositions, you can order them by
|
rlm@2
|
161 implication: \(a\) precedes \(b\) if and only if \(a\) implies
|
rlm@2
|
162 \(b\). This makes \(P\) into a poset. Since the ordering arose from
|
rlm@2
|
163 deductive implication, we'll call this a <i>deductive poset</i>.
|
rlm@2
|
164 </p>
|
rlm@2
|
165 <p>
|
rlm@2
|
166 If you have a deductive poset \(P\), you can create a related poset \(P^*\)
|
rlm@2
|
167 as follows: the underlying set is the same, and for any two
|
rlm@2
|
168 propositions \(a\) and \(b\) in \(P\), \(a\) precedes
|
rlm@2
|
169 \(ab\) in \(P^*\). We'll call this an <i>inductive poset</i>.
|
rlm@2
|
170 </p>
|
rlm@2
|
171 </div>
|
rlm@2
|
172
|
rlm@2
|
173 </div>
|
rlm@2
|
174
|
rlm@2
|
175 <div id="outline-container-1-2" class="outline-3">
|
rlm@2
|
176 <h3 id="sec-1-2"><span class="section-number-3">1.2</span> A canonical map from deductive posets to inductive posets </h3>
|
rlm@2
|
177 <div class="outline-text-3" id="text-1-2">
|
rlm@2
|
178
|
rlm@2
|
179 <p>Each poset corresponds with a poset-category, that is a category with
|
rlm@2
|
180 at most one arrow between any two objects. Considered as categories,
|
rlm@2
|
181 inductive and deuctive posets are related as follows: there is a map
|
rlm@2
|
182 \(\mathscr{F}\) which sends each arrow \(a\rightarrow b\) in \(P\) to
|
rlm@2
|
183 the arrow \(a\rightarrow ab\) in \(P^*\). In fact, since \(a\) implies
|
rlm@2
|
184 \(b\) if and only if \(a = ab\), \(\mathscr{F}\) sends each arrow in \(P\) to
|
rlm@2
|
185 an identity arrow in \(P^*\) (specifically, it sends the arrow
|
rlm@2
|
186 \(a\rightarrow b\) to the identity arrow \(a\rightarrow a\)).
|
rlm@2
|
187 </p>
|
rlm@2
|
188
|
rlm@2
|
189 </div>
|
rlm@2
|
190 </div>
|
rlm@2
|
191
|
rlm@2
|
192 </div>
|
rlm@2
|
193
|
rlm@2
|
194 <div id="outline-container-2" class="outline-2">
|
rlm@2
|
195 <h2 id="sec-2"><span class="section-number-2">2</span> Assigning plausibilities to inductive posets </h2>
|
rlm@2
|
196 <div class="outline-text-2" id="text-2">
|
rlm@2
|
197
|
rlm@2
|
198
|
rlm@2
|
199 <p>
|
rlm@2
|
200 Inductive posets encode the relative (<i>qualitative</i>) plausibilities of its
|
rlm@2
|
201 propositions: there exists an arrow \(x\rightarrow y\) only if \(x\)
|
rlm@2
|
202 is at least as plausible as \(y\).
|
rlm@2
|
203 </p>
|
rlm@2
|
204
|
rlm@2
|
205 </div>
|
rlm@2
|
206
|
rlm@2
|
207 <div id="outline-container-2-1" class="outline-3">
|
rlm@2
|
208 <h3 id="sec-2-1"><span class="section-number-3">2.1</span> Consistent reasoning as a commutative diagram </h3>
|
rlm@2
|
209 <div class="outline-text-3" id="text-2-1">
|
rlm@2
|
210
|
rlm@2
|
211 <p>Inductive categories enable the following neat trick: we can interpret
|
rlm@2
|
212 the objects of \(P^*\) as states of given information and interpret
|
rlm@2
|
213 each arrow \(a\rightarrow ab\) in \(P^*\) as an inductive inference: the arrow
|
rlm@2
|
214 \(a\rightarrow ab\) represents an inferential leap from the state of
|
rlm@2
|
215 knowledge where only \(a\) is given to the state of knowledge where
|
rlm@2
|
216 both \(a\) and \(b\) are given— in this way, it represents
|
rlm@2
|
217 the process of inferring \(b\) when given \(a\), and we label the
|
rlm@2
|
218 arrow with \((b|a)\).
|
rlm@2
|
219 </p>
|
rlm@2
|
220 <p>
|
rlm@2
|
221 This trick has several important features that suggest its usefulness,
|
rlm@2
|
222 namely
|
rlm@2
|
223 </p><ul>
|
rlm@2
|
224 <li>Composition of arrows corresponds to compound inference.
|
rlm@2
|
225 </li>
|
rlm@2
|
226 <li>In the special case of deductive inference, the inferential arrow is an
|
rlm@2
|
227 identity; the source and destination states of knowledge are the same.
|
rlm@2
|
228 </li>
|
rlm@2
|
229 <li>One aspect of the consistency requirement of Jaynes<sup><a class="footref" name="fnr.1" href="#fn.1">1</a></sup> takes the form of a
|
rlm@2
|
230 commutative square: \(x\rightarrow ax \rightarrow abx\) =
|
rlm@2
|
231 \(x\rightarrow bx \rightarrow abx\) is the categorified version of
|
rlm@2
|
232 \((AB|X)=(A|X)\cdot(B|AX)=(B|X)\cdot(A|BX)\).
|
rlm@2
|
233 </li>
|
rlm@2
|
234 <li>We can make plausibility assignments by enriching the inductive
|
rlm@2
|
235 category \(P^*\) over some monoidal category, e.g. the set of real numbers
|
rlm@2
|
236 (considered as a category) with its usual multiplication. <i>When we do</i>,
|
rlm@2
|
237 the identity arrows of \(P^*\) —corresponding to
|
rlm@2
|
238 deductive inferences— are assigned a value of certainty automatically.
|
rlm@2
|
239 </li>
|
rlm@2
|
240 </ul>
|
rlm@2
|
241
|
rlm@2
|
242
|
rlm@2
|
243 </div>
|
rlm@2
|
244
|
rlm@2
|
245 </div>
|
rlm@2
|
246
|
rlm@2
|
247 <div id="outline-container-2-2" class="outline-3">
|
rlm@2
|
248 <h3 id="sec-2-2"><span class="section-number-3">2.2</span> ``Multiplicity'' is reciprocal probability </h3>
|
rlm@2
|
249 <div class="outline-text-3" id="text-2-2">
|
rlm@2
|
250
|
rlm@2
|
251 <p>The natural numbers have a comparatively concrete origin: they are the
|
rlm@2
|
252 result of decategorifying the category of finite sets<sup><a class="footref" name="fnr.2" href="#fn.2">2</a></sup>, or the
|
rlm@2
|
253 coequalizer of the arrows from a one-object category to a two-object
|
rlm@2
|
254 category with a single nonidentity arrow. Extensions of the set of
|
rlm@2
|
255 natural numbers— such as
|
rlm@2
|
256 the set of integers or rational numbers or real numbers— strike
|
rlm@2
|
257 me as being somewhat more abstract (however, see the Eudoxus
|
rlm@2
|
258 construction of the real numbers).
|
rlm@2
|
259 </p>
|
rlm@2
|
260 <p>
|
rlm@2
|
261 Jaynes points out that our existing choice of scale for probabilities
|
rlm@2
|
262 (i.e., the scale from 0 for impossibility to 1 for
|
rlm@2
|
263 certainty) has a degree of freedom: any monotonic function of
|
rlm@2
|
264 probability encodes the same information that probability does. Though
|
rlm@2
|
265 the resulting laws for compound probability and so on change in form
|
rlm@2
|
266 when probabilities are changed, they do not change in content.
|
rlm@2
|
267 </p>
|
rlm@2
|
268 <p>
|
rlm@2
|
269 With this in mind, it seems natural and permissible to use not <i>probability</i> but
|
rlm@2
|
270 <i>reciprocal probability</i> instead. This scale, which we might
|
rlm@2
|
271 call <i>multiplicity</i>, ranges from 1 (certainty) to
|
rlm@2
|
272 positive infinity (impossibility); higher numbers are ascribed to
|
rlm@2
|
273 less-plausible events.
|
rlm@2
|
274 </p>
|
rlm@2
|
275 <p>
|
rlm@2
|
276 In this way, the ``probability''
|
rlm@2
|
277 associated with choosing one out of \(n\) indistinguishable choices
|
rlm@2
|
278 becomes identified with \(n\).
|
rlm@2
|
279 </p>
|
rlm@2
|
280 </div>
|
rlm@2
|
281
|
rlm@2
|
282 </div>
|
rlm@2
|
283
|
rlm@2
|
284 <div id="outline-container-2-3" class="outline-3">
|
rlm@2
|
285 <h3 id="sec-2-3"><span class="section-number-3">2.3</span> Laws for multiplicity </h3>
|
rlm@2
|
286 <div class="outline-text-3" id="text-2-3">
|
rlm@2
|
287
|
rlm@2
|
288 <p>Jaynes derives laws of probability; either his method or his results
|
rlm@2
|
289 can be used to obtain laws for multiplicities.
|
rlm@2
|
290 </p>
|
rlm@2
|
291 <dl>
|
rlm@2
|
292 <dt>product rule</dt><dd>The product rule is unchanged: \(\xi(AB|X)=\xi(A|X)\cdot
|
rlm@2
|
293 \xi(B|AX) = \xi(B|X)\cdot \xi(A|BX)\)
|
rlm@2
|
294 </dd>
|
rlm@2
|
295 <dt>certainty</dt><dd>States of absolute certainty are assigned a multiplicity
|
rlm@2
|
296 of 1. States of absolute impossibility are assigned a
|
rlm@2
|
297 multiplicity of positive infinity.
|
rlm@2
|
298 </dd>
|
rlm@2
|
299 <dt>entropy</dt><dd>In terms of probability, entropy has the form \(S=-\sum_i
|
rlm@2
|
300 p_i \ln{p_i} = \sum_i p_i (-\ln{p_i}) = \sum_i p_i \ln{(1/p_i)}
|
rlm@2
|
301 \). Hence, in terms of multiplicity, entropy
|
rlm@2
|
302 has the form \(S = \sum_i \frac{\ln{\xi_i}}{\xi_i} \).
|
rlm@2
|
303
|
rlm@2
|
304 <p>
|
rlm@2
|
305 Another interesting quantity is \(\exp{S}\), which behaves
|
rlm@2
|
306 multiplicitively rather than additively. \(\exp{S} =
|
rlm@2
|
307 \prod_i \exp{\frac{\ln{\xi_i}}{\xi_i}} =
|
rlm@2
|
308 \left(\exp{\ln{\xi_i}}\right)^{1/\xi_i} = \prod_i \xi_i^{1/\xi_i} \)
|
rlm@2
|
309 </p></dd>
|
rlm@2
|
310 </dl>
|
rlm@2
|
311
|
rlm@2
|
312
|
rlm@2
|
313
|
rlm@2
|
314 <div id="footnotes">
|
rlm@2
|
315 <h2 class="footnotes">Footnotes: </h2>
|
rlm@2
|
316 <div id="text-footnotes">
|
rlm@2
|
317 <p class="footnote"><sup><a class="footnum" name="fn.1" href="#fnr.1">1</a></sup> <i>(IIIa) If a conclusion can be reasoned out in more than one way, then every possible way must lead to the same result.</i>
|
rlm@2
|
318 </p>
|
rlm@2
|
319
|
rlm@2
|
320 <p class="footnote"><sup><a class="footnum" name="fn.2" href="#fnr.2">2</a></sup> As Baez explains.
|
rlm@2
|
321 </p>
|
rlm@2
|
322 </div>
|
rlm@2
|
323 </div>
|
rlm@2
|
324 </div>
|
rlm@2
|
325
|
rlm@2
|
326 </div>
|
rlm@2
|
327 </div>
|
rlm@2
|
328 <div id="postamble">
|
rlm@2
|
329 <p class="date">Date: 2011-07-09 14:19:42 EDT</p>
|
rlm@2
|
330 <p class="author">Author: Dylan Holmes</p>
|
rlm@2
|
331 <p class="creator">Org version 7.6 with Emacs version 23</p>
|
rlm@2
|
332 <a href="http://validator.w3.org/check?uri=referer">Validate XHTML 1.0</a>
|
rlm@2
|
333 </div>
|
rlm@2
|
334 </div>
|
rlm@2
|
335 </body>
|
rlm@2
|
336 </html>
|