rlm@162: #+title: Simulated Sense of Hearing rlm@162: #+author: Robert McIntyre rlm@162: #+email: rlm@mit.edu rlm@162: #+description: Simulating multiple listeners and the sense of hearing in jMonkeyEngine3 rlm@162: #+keywords: simulated hearing, openal, clojure, jMonkeyEngine3, LWJGL, AI rlm@162: #+SETUPFILE: ../../aurellem/org/setup.org rlm@162: #+INCLUDE: ../../aurellem/org/level-0.org rlm@162: #+BABEL: :exports both :noweb yes :cache no :mkdirp yes rlm@162: rlm@162: * Hearing rlm@162: rlm@162: I want to be able to place ears in a similar manner to how I place rlm@162: the eyes. I want to be able to place ears in a unique spatial rlm@162: position, and receive as output at every tick the F.F.T. of whatever rlm@162: signals are happening at that point. rlm@162: rlm@162: Hearing is one of the more difficult senses to simulate, because there rlm@162: is less support for obtaining the actual sound data that is processed rlm@162: by jMonkeyEngine3. rlm@162: rlm@162: jMonkeyEngine's sound system works as follows: rlm@162: rlm@162: - jMonkeyEngine uses the =AppSettings= for the particular application rlm@162: to determine what sort of =AudioRenderer= should be used. rlm@162: - although some support is provided for multiple AudioRendering rlm@162: backends, jMonkeyEngine at the time of this writing will either rlm@162: pick no AudioRenderer at all, or the =LwjglAudioRenderer= rlm@162: - jMonkeyEngine tries to figure out what sort of system you're rlm@162: running and extracts the appropriate native libraries. rlm@162: - the =LwjglAudioRenderer= uses the [[http://lwjgl.org/][=LWJGL=]] (LightWeight Java Game rlm@162: Library) bindings to interface with a C library called [[http://kcat.strangesoft.net/openal.html][=OpenAL=]] rlm@162: - =OpenAL= calculates the 3D sound localization and feeds a stream of rlm@162: sound to any of various sound output devices with which it knows rlm@162: how to communicate. rlm@162: rlm@162: A consequence of this is that there's no way to access the actual rlm@162: sound data produced by =OpenAL=. Even worse, =OpenAL= only supports rlm@162: one /listener/, which normally isn't a problem for games, but becomes rlm@162: a problem when trying to make multiple AI creatures that can each hear rlm@162: the world from a different perspective. rlm@162: rlm@162: To make many AI creatures in jMonkeyEngine that can each hear the rlm@162: world from their own perspective, it is necessary to go all the way rlm@162: back to =OpenAL= and implement support for simulated hearing there. rlm@162: rlm@162: * Extending =OpenAL= rlm@162: ** =OpenAL= Devices rlm@162: rlm@162: =OpenAL= goes to great lengths to support many different systems, all rlm@162: with different sound capabilities and interfaces. It accomplishes this rlm@162: difficult task by providing code for many different sound backends in rlm@162: pseudo-objects called /Devices/. There's a device for the Linux Open rlm@162: Sound System and the Advanced Linux Sound Architecture, there's one rlm@162: for Direct Sound on Windows, there's even one for Solaris. =OpenAL= rlm@162: solves the problem of platform independence by providing all these rlm@162: Devices. rlm@162: rlm@162: Wrapper libraries such as LWJGL are free to examine the system on rlm@162: which they are running and then select an appropriate device for that rlm@162: system. rlm@162: rlm@162: There are also a few "special" devices that don't interface with any rlm@162: particular system. These include the Null Device, which doesn't do rlm@162: anything, and the Wave Device, which writes whatever sound it receives rlm@162: to a file, if everything has been set up correctly when configuring rlm@162: =OpenAL=. rlm@162: rlm@162: Actual mixing of the sound data happens in the Devices, and they are rlm@162: the only point in the sound rendering process where this data is rlm@162: available. rlm@162: rlm@162: Therefore, in order to support multiple listeners, and get the sound rlm@162: data in a form that the AIs can use, it is necessary to create a new rlm@162: Device, which supports this features. rlm@162: rlm@162: ** The Send Device rlm@162: Adding a device to OpenAL is rather tricky -- there are five separate rlm@162: files in the =OpenAL= source tree that must be modified to do so. I've rlm@162: documented this process [[./add-new-device.org][here]] for anyone who is interested. rlm@162: rlm@162: rlm@162: Onward to that actual Device! rlm@162: rlm@162: again, my objectives are: rlm@162: rlm@162: - Support Multiple Listeners from jMonkeyEngine3 rlm@162: - Get access to the rendered sound data for further processing from rlm@162: clojure. rlm@162: rlm@162: ** =send.c= rlm@162: rlm@162: ** Header rlm@162: #+name: send-header rlm@162: #+begin_src C rlm@162: #include "config.h" rlm@162: #include rlm@162: #include "alMain.h" rlm@162: #include "AL/al.h" rlm@162: #include "AL/alc.h" rlm@162: #include "alSource.h" rlm@162: #include rlm@162: rlm@162: //////////////////// Summary rlm@162: rlm@162: struct send_data; rlm@162: struct context_data; rlm@162: rlm@162: static void addContext(ALCdevice *, ALCcontext *); rlm@162: static void syncContexts(ALCcontext *master, ALCcontext *slave); rlm@162: static void syncSources(ALsource *master, ALsource *slave, rlm@162: ALCcontext *masterCtx, ALCcontext *slaveCtx); rlm@162: rlm@162: static void syncSourcei(ALuint master, ALuint slave, rlm@162: ALCcontext *masterCtx, ALCcontext *ctx2, ALenum param); rlm@162: static void syncSourcef(ALuint master, ALuint slave, rlm@162: ALCcontext *masterCtx, ALCcontext *ctx2, ALenum param); rlm@162: static void syncSource3f(ALuint master, ALuint slave, rlm@162: ALCcontext *masterCtx, ALCcontext *ctx2, ALenum param); rlm@162: rlm@162: static void swapInContext(ALCdevice *, struct context_data *); rlm@162: static void saveContext(ALCdevice *, struct context_data *); rlm@162: static void limitContext(ALCdevice *, ALCcontext *); rlm@162: static void unLimitContext(ALCdevice *); rlm@162: rlm@162: static void init(ALCdevice *); rlm@162: static void renderData(ALCdevice *, int samples); rlm@162: rlm@162: #define UNUSED(x) (void)(x) rlm@162: #+end_src rlm@162: rlm@162: The main idea behind the Send device is to take advantage of the fact rlm@162: that LWJGL only manages one /context/ when using OpenAL. A /context/ rlm@162: is like a container that holds samples and keeps track of where the rlm@162: listener is. In order to support multiple listeners, the Send device rlm@162: identifies the LWJGL context as the master context, and creates any rlm@162: number of slave contexts to represent additional listeners. Every rlm@162: time the device renders sound, it synchronizes every source from the rlm@162: master LWJGL context to the slave contexts. Then, it renders each rlm@162: context separately, using a different listener for each one. The rlm@162: rendered sound is made available via JNI to jMonkeyEngine. rlm@162: rlm@162: To recap, the process is: rlm@162: - Set the LWJGL context as "master" in the =init()= method. rlm@162: - Create any number of additional contexts via =addContext()= rlm@162: - At every call to =renderData()= sync the master context with the rlm@162: slave contexts with =syncContexts()= rlm@162: - =syncContexts()= calls =syncSources()= to sync all the sources rlm@162: which are in the master context. rlm@162: - =limitContext()= and =unLimitContext()= make it possible to render rlm@162: only one context at a time. rlm@162: rlm@162: ** Necessary State rlm@162: #+name: send-state rlm@162: #+begin_src C rlm@162: //////////////////// State rlm@162: rlm@162: typedef struct context_data { rlm@162: ALfloat ClickRemoval[MAXCHANNELS]; rlm@162: ALfloat PendingClicks[MAXCHANNELS]; rlm@162: ALvoid *renderBuffer; rlm@162: ALCcontext *ctx; rlm@162: } context_data; rlm@162: rlm@162: typedef struct send_data { rlm@162: ALuint size; rlm@162: context_data **contexts; rlm@162: ALuint numContexts; rlm@162: ALuint maxContexts; rlm@162: } send_data; rlm@162: #+end_src rlm@162: rlm@162: Switching between contexts is not the normal operation of a Device, rlm@162: and one of the problems with doing so is that a Device normally keeps rlm@162: around a few pieces of state such as the =ClickRemoval= array above rlm@162: which will become corrupted if the contexts are not done in rlm@162: parallel. The solution is to create a copy of this normally global rlm@162: device state for each context, and copy it back and forth into and out rlm@162: of the actual device state whenever a context is rendered. rlm@162: rlm@162: ** Synchronization Macros rlm@162: #+name: sync-macros rlm@162: #+begin_src C rlm@162: //////////////////// Context Creation / Synchronization rlm@162: rlm@162: #define _MAKE_SYNC(NAME, INIT_EXPR, GET_EXPR, SET_EXPR) \ rlm@162: void NAME (ALuint sourceID1, ALuint sourceID2, \ rlm@162: ALCcontext *ctx1, ALCcontext *ctx2, \ rlm@162: ALenum param){ \ rlm@162: INIT_EXPR; \ rlm@162: ALCcontext *current = alcGetCurrentContext(); \ rlm@162: alcMakeContextCurrent(ctx1); \ rlm@162: GET_EXPR; \ rlm@162: alcMakeContextCurrent(ctx2); \ rlm@162: SET_EXPR; \ rlm@162: alcMakeContextCurrent(current); \ rlm@162: } rlm@162: rlm@162: #define MAKE_SYNC(NAME, TYPE, GET, SET) \ rlm@162: _MAKE_SYNC(NAME, \ rlm@162: TYPE value, \ rlm@162: GET(sourceID1, param, &value), \ rlm@162: SET(sourceID2, param, value)) rlm@162: rlm@162: #define MAKE_SYNC3(NAME, TYPE, GET, SET) \ rlm@162: _MAKE_SYNC(NAME, \ rlm@162: TYPE value1; TYPE value2; TYPE value3;, \ rlm@162: GET(sourceID1, param, &value1, &value2, &value3), \ rlm@162: SET(sourceID2, param, value1, value2, value3)) rlm@162: rlm@162: MAKE_SYNC( syncSourcei, ALint, alGetSourcei, alSourcei); rlm@162: MAKE_SYNC( syncSourcef, ALfloat, alGetSourcef, alSourcef); rlm@162: MAKE_SYNC3(syncSource3i, ALint, alGetSource3i, alSource3i); rlm@162: MAKE_SYNC3(syncSource3f, ALfloat, alGetSource3f, alSource3f); rlm@162: rlm@162: #+end_src rlm@162: rlm@162: Setting the state of an =OpenAL= source is done with the =alSourcei=, rlm@162: =alSourcef=, =alSource3i=, and =alSource3f= functions. In order to rlm@162: completely synchronize two sources, it is necessary to use all of rlm@162: them. These macros help to condense the otherwise repetitive rlm@162: synchronization code involving these similar low-level =OpenAL= functions. rlm@162: rlm@162: ** Source Synchronization rlm@162: #+name: sync-sources rlm@162: #+begin_src C rlm@162: void syncSources(ALsource *masterSource, ALsource *slaveSource, rlm@162: ALCcontext *masterCtx, ALCcontext *slaveCtx){ rlm@162: ALuint master = masterSource->source; rlm@162: ALuint slave = slaveSource->source; rlm@162: ALCcontext *current = alcGetCurrentContext(); rlm@162: rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_PITCH); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_GAIN); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_MAX_DISTANCE); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_ROLLOFF_FACTOR); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_REFERENCE_DISTANCE); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_MIN_GAIN); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_MAX_GAIN); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_CONE_OUTER_GAIN); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_CONE_INNER_ANGLE); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_CONE_OUTER_ANGLE); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_SEC_OFFSET); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_SAMPLE_OFFSET); rlm@162: syncSourcef(master,slave,masterCtx,slaveCtx,AL_BYTE_OFFSET); rlm@162: rlm@162: syncSource3f(master,slave,masterCtx,slaveCtx,AL_POSITION); rlm@162: syncSource3f(master,slave,masterCtx,slaveCtx,AL_VELOCITY); rlm@162: syncSource3f(master,slave,masterCtx,slaveCtx,AL_DIRECTION); rlm@162: rlm@162: syncSourcei(master,slave,masterCtx,slaveCtx,AL_SOURCE_RELATIVE); rlm@162: syncSourcei(master,slave,masterCtx,slaveCtx,AL_LOOPING); rlm@162: rlm@162: alcMakeContextCurrent(masterCtx); rlm@162: ALint source_type; rlm@162: alGetSourcei(master, AL_SOURCE_TYPE, &source_type); rlm@162: rlm@162: // Only static sources are currently synchronized! rlm@162: if (AL_STATIC == source_type){ rlm@162: ALint master_buffer; rlm@162: ALint slave_buffer; rlm@162: alGetSourcei(master, AL_BUFFER, &master_buffer); rlm@162: alcMakeContextCurrent(slaveCtx); rlm@162: alGetSourcei(slave, AL_BUFFER, &slave_buffer); rlm@162: if (master_buffer != slave_buffer){ rlm@162: alSourcei(slave, AL_BUFFER, master_buffer); rlm@162: } rlm@162: } rlm@162: rlm@162: // Synchronize the state of the two sources. rlm@162: alcMakeContextCurrent(masterCtx); rlm@162: ALint masterState; rlm@162: ALint slaveState; rlm@162: rlm@162: alGetSourcei(master, AL_SOURCE_STATE, &masterState); rlm@162: alcMakeContextCurrent(slaveCtx); rlm@162: alGetSourcei(slave, AL_SOURCE_STATE, &slaveState); rlm@162: rlm@162: if (masterState != slaveState){ rlm@162: switch (masterState){ rlm@162: case AL_INITIAL : alSourceRewind(slave); break; rlm@162: case AL_PLAYING : alSourcePlay(slave); break; rlm@162: case AL_PAUSED : alSourcePause(slave); break; rlm@162: case AL_STOPPED : alSourceStop(slave); break; rlm@162: } rlm@162: } rlm@162: // Restore whatever context was previously active. rlm@162: alcMakeContextCurrent(current); rlm@162: } rlm@162: #+end_src rlm@162: This function is long because it has to exhaustively go through all the rlm@162: possible state that a source can have and make sure that it is the rlm@162: same between the master and slave sources. I'd like to take this rlm@162: moment to salute the [[http://connect.creativelabs.com/openal/Documentation/Forms/AllItems.aspx][=OpenAL= Reference Manual]], which provides a very rlm@162: good description of =OpenAL='s internals. rlm@162: rlm@162: ** Context Synchronization rlm@162: #+name: sync-contexts rlm@162: #+begin_src C rlm@162: void syncContexts(ALCcontext *master, ALCcontext *slave){ rlm@162: /* If there aren't sufficient sources in slave to mirror rlm@162: the sources in master, create them. */ rlm@162: ALCcontext *current = alcGetCurrentContext(); rlm@162: rlm@162: UIntMap *masterSourceMap = &(master->SourceMap); rlm@162: UIntMap *slaveSourceMap = &(slave->SourceMap); rlm@162: ALuint numMasterSources = masterSourceMap->size; rlm@162: ALuint numSlaveSources = slaveSourceMap->size; rlm@162: rlm@162: alcMakeContextCurrent(slave); rlm@162: if (numSlaveSources < numMasterSources){ rlm@162: ALuint numMissingSources = numMasterSources - numSlaveSources; rlm@162: ALuint newSources[numMissingSources]; rlm@162: alGenSources(numMissingSources, newSources); rlm@162: } rlm@162: rlm@162: /* Now, slave is guaranteed to have at least as many sources rlm@162: as master. Sync each source from master to the corresponding rlm@162: source in slave. */ rlm@162: int i; rlm@162: for(i = 0; i < masterSourceMap->size; i++){ rlm@162: syncSources((ALsource*)masterSourceMap->array[i].value, rlm@162: (ALsource*)slaveSourceMap->array[i].value, rlm@162: master, slave); rlm@162: } rlm@162: alcMakeContextCurrent(current); rlm@162: } rlm@162: #+end_src rlm@162: rlm@162: Most of the hard work in Context Synchronization is done in rlm@162: =syncSources()=. The only thing that =syncContexts()= has to worry rlm@162: about is automatically creating new sources whenever a slave context rlm@162: does not have the same number of sources as the master context. rlm@162: rlm@162: ** Context Creation rlm@162: #+name: context-creation rlm@162: #+begin_src C rlm@162: static void addContext(ALCdevice *Device, ALCcontext *context){ rlm@162: send_data *data = (send_data*)Device->ExtraData; rlm@162: // expand array if necessary rlm@162: if (data->numContexts >= data->maxContexts){ rlm@162: ALuint newMaxContexts = data->maxContexts*2 + 1; rlm@162: data->contexts = realloc(data->contexts, newMaxContexts*sizeof(context_data)); rlm@162: data->maxContexts = newMaxContexts; rlm@162: } rlm@162: // create context_data and add it to the main array rlm@162: context_data *ctxData; rlm@162: ctxData = (context_data*)calloc(1, sizeof(*ctxData)); rlm@162: ctxData->renderBuffer = rlm@162: malloc(BytesFromDevFmt(Device->FmtType) * rlm@162: Device->NumChan * Device->UpdateSize); rlm@162: ctxData->ctx = context; rlm@162: rlm@162: data->contexts[data->numContexts] = ctxData; rlm@162: data->numContexts++; rlm@162: } rlm@162: #+end_src rlm@162: rlm@162: Here, the slave context is created, and it's data is stored in the rlm@162: device-wide =ExtraData= structure. The =renderBuffer= that is created rlm@162: here is where the rendered sound samples for this slave context will rlm@162: eventually go. rlm@162: rlm@162: ** Context Switching rlm@162: #+name: context-switching rlm@162: #+begin_src C rlm@162: //////////////////// Context Switching rlm@162: rlm@162: /* A device brings along with it two pieces of state rlm@162: * which have to be swapped in and out with each context. rlm@162: */ rlm@162: static void swapInContext(ALCdevice *Device, context_data *ctxData){ rlm@162: memcpy(Device->ClickRemoval, ctxData->ClickRemoval, sizeof(ALfloat)*MAXCHANNELS); rlm@162: memcpy(Device->PendingClicks, ctxData->PendingClicks, sizeof(ALfloat)*MAXCHANNELS); rlm@162: } rlm@162: rlm@162: static void saveContext(ALCdevice *Device, context_data *ctxData){ rlm@162: memcpy(ctxData->ClickRemoval, Device->ClickRemoval, sizeof(ALfloat)*MAXCHANNELS); rlm@162: memcpy(ctxData->PendingClicks, Device->PendingClicks, sizeof(ALfloat)*MAXCHANNELS); rlm@162: } rlm@162: rlm@162: static ALCcontext **currentContext; rlm@162: static ALuint currentNumContext; rlm@162: rlm@162: /* By default, all contexts are rendered at once for each call to aluMixData. rlm@162: * This function uses the internals of the ALCdevice struct to temporally rlm@162: * cause aluMixData to only render the chosen context. rlm@162: */ rlm@162: static void limitContext(ALCdevice *Device, ALCcontext *ctx){ rlm@162: currentContext = Device->Contexts; rlm@162: currentNumContext = Device->NumContexts; rlm@162: Device->Contexts = &ctx; rlm@162: Device->NumContexts = 1; rlm@162: } rlm@162: rlm@162: static void unLimitContext(ALCdevice *Device){ rlm@162: Device->Contexts = currentContext; rlm@162: Device->NumContexts = currentNumContext; rlm@162: } rlm@162: #+end_src rlm@162: rlm@162: =OpenAL= normally renders all Contexts in parallel, outputting the rlm@162: whole result to the buffer. It does this by iterating over the rlm@162: Device->Contexts array and rendering each context to the buffer in rlm@162: turn. By temporally setting Device->NumContexts to 1 and adjusting rlm@162: the Device's context list to put the desired context-to-be-rendered rlm@162: into position 0, we can get trick =OpenAL= into rendering each slave rlm@162: context separate from all the others. rlm@162: rlm@162: ** Main Device Loop rlm@162: #+name: main-loop rlm@162: #+begin_src C rlm@162: //////////////////// Main Device Loop rlm@162: rlm@162: /* Establish the LWJGL context as the master context, which will rlm@162: * be synchronized to all the slave contexts rlm@162: */ rlm@162: static void init(ALCdevice *Device){ rlm@162: ALCcontext *masterContext = alcGetCurrentContext(); rlm@162: addContext(Device, masterContext); rlm@162: } rlm@162: rlm@162: rlm@162: static void renderData(ALCdevice *Device, int samples){ rlm@162: if(!Device->Connected){return;} rlm@162: send_data *data = (send_data*)Device->ExtraData; rlm@162: ALCcontext *current = alcGetCurrentContext(); rlm@162: rlm@162: ALuint i; rlm@162: for (i = 1; i < data->numContexts; i++){ rlm@162: syncContexts(data->contexts[0]->ctx , data->contexts[i]->ctx); rlm@162: } rlm@162: rlm@162: if ((ALuint) samples > Device->UpdateSize){ rlm@162: printf("exceeding internal buffer size; dropping samples\n"); rlm@162: printf("requested %d; available %d\n", samples, Device->UpdateSize); rlm@162: samples = (int) Device->UpdateSize; rlm@162: } rlm@162: rlm@162: for (i = 0; i < data->numContexts; i++){ rlm@162: context_data *ctxData = data->contexts[i]; rlm@162: ALCcontext *ctx = ctxData->ctx; rlm@162: alcMakeContextCurrent(ctx); rlm@162: limitContext(Device, ctx); rlm@162: swapInContext(Device, ctxData); rlm@162: aluMixData(Device, ctxData->renderBuffer, samples); rlm@162: saveContext(Device, ctxData); rlm@162: unLimitContext(Device); rlm@162: } rlm@162: alcMakeContextCurrent(current); rlm@162: } rlm@162: #+end_src rlm@162: rlm@162: The main loop synchronizes the master LWJGL context with all the slave rlm@162: contexts, then walks each context, rendering just that context to it's rlm@162: audio-sample storage buffer. rlm@162: rlm@162: ** JNI Methods rlm@162: rlm@162: At this point, we have the ability to create multiple listeners by rlm@162: using the master/slave context trick, and the rendered audio data is rlm@162: waiting patiently in internal buffers, one for each listener. We need rlm@162: a way to transport this information to Java, and also a way to drive rlm@162: this device from Java. The following JNI interface code is inspired rlm@162: by the way LWJGL interfaces with =OpenAL=. rlm@162: rlm@162: *** step rlm@162: #+name: jni-step rlm@162: #+begin_src C rlm@162: //////////////////// JNI Methods rlm@162: rlm@162: #include "com_aurellem_send_AudioSend.h" rlm@162: rlm@162: /* rlm@162: * Class: com_aurellem_send_AudioSend rlm@162: * Method: nstep rlm@162: * Signature: (JI)V rlm@162: */ rlm@162: JNIEXPORT void JNICALL Java_com_aurellem_send_AudioSend_nstep rlm@162: (JNIEnv *env, jclass clazz, jlong device, jint samples){ rlm@162: UNUSED(env);UNUSED(clazz);UNUSED(device); rlm@162: renderData((ALCdevice*)((intptr_t)device), samples); rlm@162: } rlm@162: #+end_src rlm@162: This device, unlike most of the other devices in =OpenAL=, does not rlm@162: render sound unless asked. This enables the system to slow down or rlm@162: speed up depending on the needs of the AIs who are using it to rlm@162: listen. If the device tried to render samples in real-time, a rlm@162: complicated AI whose mind takes 100 seconds of computer time to rlm@162: simulate 1 second of AI-time would miss almost all of the sound in rlm@162: its environment. rlm@162: rlm@162: rlm@162: *** getSamples rlm@162: #+name: jni-get-samples rlm@162: #+begin_src C rlm@162: /* rlm@162: * Class: com_aurellem_send_AudioSend rlm@162: * Method: ngetSamples rlm@162: * Signature: (JLjava/nio/ByteBuffer;III)V rlm@162: */ rlm@162: JNIEXPORT void JNICALL Java_com_aurellem_send_AudioSend_ngetSamples rlm@162: (JNIEnv *env, jclass clazz, jlong device, jobject buffer, jint position, rlm@162: jint samples, jint n){ rlm@162: UNUSED(clazz); rlm@162: rlm@162: ALvoid *buffer_address = rlm@162: ((ALbyte *)(((char*)(*env)->GetDirectBufferAddress(env, buffer)) + position)); rlm@162: ALCdevice *recorder = (ALCdevice*) ((intptr_t)device); rlm@162: send_data *data = (send_data*)recorder->ExtraData; rlm@162: if ((ALuint)n > data->numContexts){return;} rlm@162: memcpy(buffer_address, data->contexts[n]->renderBuffer, rlm@162: BytesFromDevFmt(recorder->FmtType) * recorder->NumChan * samples); rlm@162: } rlm@162: #+end_src rlm@162: rlm@162: This is the transport layer between C and Java that will eventually rlm@162: allow us to access rendered sound data from clojure. rlm@162: rlm@162: *** Listener Management rlm@162: rlm@162: =addListener=, =setNthListenerf=, and =setNthListener3f= are rlm@162: necessary to change the properties of any listener other than the rlm@162: master one, since only the listener of the current active context is rlm@162: affected by the normal =OpenAL= listener calls. rlm@162: #+name: listener-manage rlm@162: #+begin_src C rlm@162: /* rlm@162: * Class: com_aurellem_send_AudioSend rlm@162: * Method: naddListener rlm@162: * Signature: (J)V rlm@162: */ rlm@162: JNIEXPORT void JNICALL Java_com_aurellem_send_AudioSend_naddListener rlm@162: (JNIEnv *env, jclass clazz, jlong device){ rlm@162: UNUSED(env); UNUSED(clazz); rlm@162: //printf("creating new context via naddListener\n"); rlm@162: ALCdevice *Device = (ALCdevice*) ((intptr_t)device); rlm@162: ALCcontext *new = alcCreateContext(Device, NULL); rlm@162: addContext(Device, new); rlm@162: } rlm@162: rlm@162: /* rlm@162: * Class: com_aurellem_send_AudioSend rlm@162: * Method: nsetNthListener3f rlm@162: * Signature: (IFFFJI)V rlm@162: */ rlm@162: JNIEXPORT void JNICALL Java_com_aurellem_send_AudioSend_nsetNthListener3f rlm@162: (JNIEnv *env, jclass clazz, jint param, rlm@162: jfloat v1, jfloat v2, jfloat v3, jlong device, jint contextNum){ rlm@162: UNUSED(env);UNUSED(clazz); rlm@162: rlm@162: ALCdevice *Device = (ALCdevice*) ((intptr_t)device); rlm@162: send_data *data = (send_data*)Device->ExtraData; rlm@162: rlm@162: ALCcontext *current = alcGetCurrentContext(); rlm@162: if ((ALuint)contextNum > data->numContexts){return;} rlm@162: alcMakeContextCurrent(data->contexts[contextNum]->ctx); rlm@162: alListener3f(param, v1, v2, v3); rlm@162: alcMakeContextCurrent(current); rlm@162: } rlm@162: rlm@162: /* rlm@162: * Class: com_aurellem_send_AudioSend rlm@162: * Method: nsetNthListenerf rlm@162: * Signature: (IFJI)V rlm@162: */ rlm@162: JNIEXPORT void JNICALL Java_com_aurellem_send_AudioSend_nsetNthListenerf rlm@162: (JNIEnv *env, jclass clazz, jint param, jfloat v1, jlong device, rlm@162: jint contextNum){ rlm@162: rlm@162: UNUSED(env);UNUSED(clazz); rlm@162: rlm@162: ALCdevice *Device = (ALCdevice*) ((intptr_t)device); rlm@162: send_data *data = (send_data*)Device->ExtraData; rlm@162: rlm@162: ALCcontext *current = alcGetCurrentContext(); rlm@162: if ((ALuint)contextNum > data->numContexts){return;} rlm@162: alcMakeContextCurrent(data->contexts[contextNum]->ctx); rlm@162: alListenerf(param, v1); rlm@162: alcMakeContextCurrent(current); rlm@162: } rlm@162: #+end_src rlm@162: rlm@162: *** Initialization rlm@162: =initDevice= is called from the Java side after LWJGL has created its rlm@162: context, and before any calls to =addListener=. It establishes the rlm@162: LWJGL context as the master context. rlm@162: rlm@162: =getAudioFormat= is a convenience function that uses JNI to build up a rlm@162: =javax.sound.sampled.AudioFormat= object from data in the Device. This rlm@162: way, there is no ambiguity about what the bits created by =step= and rlm@162: returned by =getSamples= mean. rlm@162: #+name: jni-init rlm@162: #+begin_src C rlm@162: /* rlm@162: * Class: com_aurellem_send_AudioSend rlm@162: * Method: ninitDevice rlm@162: * Signature: (J)V rlm@162: */ rlm@162: JNIEXPORT void JNICALL Java_com_aurellem_send_AudioSend_ninitDevice rlm@162: (JNIEnv *env, jclass clazz, jlong device){ rlm@162: UNUSED(env);UNUSED(clazz); rlm@162: ALCdevice *Device = (ALCdevice*) ((intptr_t)device); rlm@162: init(Device); rlm@162: } rlm@162: rlm@162: /* rlm@162: * Class: com_aurellem_send_AudioSend rlm@162: * Method: ngetAudioFormat rlm@162: * Signature: (J)Ljavax/sound/sampled/AudioFormat; rlm@162: */ rlm@162: JNIEXPORT jobject JNICALL Java_com_aurellem_send_AudioSend_ngetAudioFormat rlm@162: (JNIEnv *env, jclass clazz, jlong device){ rlm@162: UNUSED(clazz); rlm@162: jclass AudioFormatClass = rlm@162: (*env)->FindClass(env, "javax/sound/sampled/AudioFormat"); rlm@162: jmethodID AudioFormatConstructor = rlm@162: (*env)->GetMethodID(env, AudioFormatClass, "", "(FIIZZ)V"); rlm@162: rlm@162: ALCdevice *Device = (ALCdevice*) ((intptr_t)device); rlm@162: int isSigned; rlm@162: switch (Device->FmtType) rlm@162: { rlm@162: case DevFmtUByte: rlm@162: case DevFmtUShort: isSigned = 0; break; rlm@162: default : isSigned = 1; rlm@162: } rlm@162: float frequency = Device->Frequency; rlm@162: int bitsPerFrame = (8 * BytesFromDevFmt(Device->FmtType)); rlm@162: int channels = Device->NumChan; rlm@162: jobject format = (*env)-> rlm@162: NewObject( rlm@162: env,AudioFormatClass,AudioFormatConstructor, rlm@162: frequency, rlm@162: bitsPerFrame, rlm@162: channels, rlm@162: isSigned, rlm@162: 0); rlm@162: return format; rlm@162: } rlm@162: #+end_src rlm@162: rlm@162: ** Boring Device management stuff rlm@162: This code is more-or-less copied verbatim from the other =OpenAL= rlm@162: backends. It's the basis for =OpenAL='s primitive object system. rlm@162: #+name: device-init rlm@162: #+begin_src C rlm@162: //////////////////// Device Initialization / Management rlm@162: rlm@162: static const ALCchar sendDevice[] = "Multiple Audio Send"; rlm@162: rlm@162: static ALCboolean send_open_playback(ALCdevice *device, rlm@162: const ALCchar *deviceName) rlm@162: { rlm@162: send_data *data; rlm@162: // stop any buffering for stdout, so that I can rlm@162: // see the printf statements in my terminal immediately rlm@162: setbuf(stdout, NULL); rlm@162: rlm@162: if(!deviceName) rlm@162: deviceName = sendDevice; rlm@162: else if(strcmp(deviceName, sendDevice) != 0) rlm@162: return ALC_FALSE; rlm@162: data = (send_data*)calloc(1, sizeof(*data)); rlm@162: device->szDeviceName = strdup(deviceName); rlm@162: device->ExtraData = data; rlm@162: return ALC_TRUE; rlm@162: } rlm@162: rlm@162: static void send_close_playback(ALCdevice *device) rlm@162: { rlm@162: send_data *data = (send_data*)device->ExtraData; rlm@162: alcMakeContextCurrent(NULL); rlm@162: ALuint i; rlm@162: // Destroy all slave contexts. LWJGL will take care of rlm@162: // its own context. rlm@162: for (i = 1; i < data->numContexts; i++){ rlm@162: context_data *ctxData = data->contexts[i]; rlm@162: alcDestroyContext(ctxData->ctx); rlm@162: free(ctxData->renderBuffer); rlm@162: free(ctxData); rlm@162: } rlm@162: free(data); rlm@162: device->ExtraData = NULL; rlm@162: } rlm@162: rlm@162: static ALCboolean send_reset_playback(ALCdevice *device) rlm@162: { rlm@162: SetDefaultWFXChannelOrder(device); rlm@162: return ALC_TRUE; rlm@162: } rlm@162: rlm@162: static void send_stop_playback(ALCdevice *Device){ rlm@162: UNUSED(Device); rlm@162: } rlm@162: rlm@162: static const BackendFuncs send_funcs = { rlm@162: send_open_playback, rlm@162: send_close_playback, rlm@162: send_reset_playback, rlm@162: send_stop_playback, rlm@162: NULL, rlm@162: NULL, /* These would be filled with functions to */ rlm@162: NULL, /* handle capturing audio if we we into that */ rlm@162: NULL, /* sort of thing... */ rlm@162: NULL, rlm@162: NULL rlm@162: }; rlm@162: rlm@162: ALCboolean alc_send_init(BackendFuncs *func_list){ rlm@162: *func_list = send_funcs; rlm@162: return ALC_TRUE; rlm@162: } rlm@162: rlm@162: void alc_send_deinit(void){} rlm@162: rlm@162: void alc_send_probe(enum DevProbe type) rlm@162: { rlm@162: switch(type) rlm@162: { rlm@162: case DEVICE_PROBE: rlm@162: AppendDeviceList(sendDevice); rlm@162: break; rlm@162: case ALL_DEVICE_PROBE: rlm@162: AppendAllDeviceList(sendDevice); rlm@162: break; rlm@162: case CAPTURE_DEVICE_PROBE: rlm@162: break; rlm@162: } rlm@162: } rlm@162: #+end_src rlm@162: rlm@162: * The Java interface, =AudioSend= rlm@162: rlm@162: The Java interface to the Send Device follows naturally from the JNI rlm@162: definitions. It is included here for completeness. The only thing here rlm@162: of note is the =deviceID=. This is available from LWJGL, but to only rlm@162: way to get it is reflection. Unfortunately, there is no other way to rlm@162: control the Send device than to obtain a pointer to it. rlm@162: rlm@162: #+include: "../java/src/com/aurellem/send/AudioSend.java" src java :exports code rlm@162: rlm@162: * Finally, Ears in clojure! rlm@162: rlm@167: Now that the infrastructure is complete the clojure ear abstraction is rlm@167: simple. Just as there were =SceneProcessors= for vision, there are rlm@162: now =SoundProcessors= for hearing. rlm@162: rlm@162: #+include "../../jmeCapture/src/com/aurellem/capture/audio/SoundProcessor.java" src java rlm@162: rlm@164: rlm@164: rlm@162: #+name: ears rlm@162: #+begin_src clojure rlm@162: (ns cortex.hearing rlm@162: "Simulate the sense of hearing in jMonkeyEngine3. Enables multiple rlm@164: listeners at different positions in the same world. Automatically rlm@164: reads ear-nodes from specially prepared blender files and rlm@164: instantiates them in the world as actual ears." rlm@162: {:author "Robert McIntyre"} rlm@162: (:use (cortex world util sense)) rlm@165: (:use clojure.contrib.def) rlm@162: (:import java.nio.ByteBuffer) rlm@189: (:import java.awt.image.BufferedImage) rlm@162: (:import org.tritonus.share.sampled.FloatSampleTools) rlm@165: (:import (com.aurellem.capture.audio rlm@165: SoundProcessor AudioSendRenderer)) rlm@165: (:import javax.sound.sampled.AudioFormat) rlm@165: (:import (com.jme3.scene Spatial Node)) rlm@165: (:import com.jme3.audio.Listener) rlm@165: (:import com.jme3.app.Application) rlm@165: (:import com.jme3.scene.control.AbstractControl)) rlm@162: rlm@162: (defn sound-processor rlm@162: "Deals with converting ByteBuffers into Vectors of floats so that rlm@162: the continuation functions can be defined in terms of immutable rlm@162: stuff." rlm@162: [continuation] rlm@162: (proxy [SoundProcessor] [] rlm@162: (cleanup []) rlm@162: (process rlm@162: [#^ByteBuffer audioSamples numSamples #^AudioFormat audioFormat] rlm@162: (let [bytes (byte-array numSamples) rlm@162: num-floats (/ numSamples (.getFrameSize audioFormat)) rlm@162: floats (float-array num-floats)] rlm@162: (.get audioSamples bytes 0 numSamples) rlm@162: (FloatSampleTools/byte2floatInterleaved rlm@162: bytes 0 floats 0 num-floats audioFormat) rlm@162: (continuation rlm@162: (vec floats)))))) rlm@162: rlm@164: (defvar rlm@164: ^{:arglists '([creature])} rlm@164: ears rlm@164: (sense-nodes "ears") rlm@164: "Return the children of the creature's \"ears\" node.") rlm@162: rlm@163: (defn update-listener-velocity! rlm@162: "Update the listener's velocity every update loop." rlm@162: [#^Spatial obj #^Listener lis] rlm@162: (let [old-position (atom (.getLocation lis))] rlm@162: (.addControl rlm@162: obj rlm@162: (proxy [AbstractControl] [] rlm@162: (controlUpdate [tpf] rlm@162: (let [new-position (.getLocation lis)] rlm@162: (.setVelocity rlm@162: lis rlm@162: (.mult (.subtract new-position @old-position) rlm@162: (float (/ tpf)))) rlm@162: (reset! old-position new-position))) rlm@162: (controlRender [_ _]))))) rlm@162: rlm@169: (defn add-ear! rlm@164: "Create a Listener centered on the current position of 'ear rlm@164: which follows the closest physical node in 'creature and rlm@164: sends sound data to 'continuation." rlm@162: [#^Application world #^Node creature #^Spatial ear continuation] rlm@162: (let [target (closest-node creature ear) rlm@162: lis (Listener.) rlm@162: audio-renderer (.getAudioRenderer world) rlm@162: sp (sound-processor continuation)] rlm@162: (.setLocation lis (.getWorldTranslation ear)) rlm@162: (.setRotation lis (.getWorldRotation ear)) rlm@162: (bind-sense target lis) rlm@163: (update-listener-velocity! target lis) rlm@162: (.addListener audio-renderer lis) rlm@162: (.registerSoundProcessor audio-renderer lis sp))) rlm@162: rlm@163: (defn hearing-fn rlm@164: "Returns a functon which returns auditory sensory data when called rlm@164: inside a running simulation." rlm@162: [#^Node creature #^Spatial ear] rlm@164: (let [hearing-data (atom []) rlm@164: register-listener! rlm@164: (runonce rlm@164: (fn [#^Application world] rlm@169: (add-ear! rlm@164: world creature ear rlm@164: (fn [data] rlm@164: (reset! hearing-data (vec data))))))] rlm@164: (fn [#^Application world] rlm@164: (register-listener! world) rlm@164: (let [data @hearing-data rlm@164: topology rlm@164: (vec (map #(vector % 0) (range 0 (count data)))) rlm@164: scaled-data rlm@164: (vec rlm@164: (map rlm@164: #(rem (int (* 255 (/ (+ 1 %) 2))) 256) rlm@164: data))] rlm@164: [topology scaled-data])))) rlm@164: rlm@163: (defn hearing! rlm@164: "Endow the creature in a particular world with the sense of rlm@164: hearing. Will return a sequence of functions, one for each ear, rlm@164: which when called will return the auditory data from that ear." rlm@162: [#^Node creature] rlm@164: (for [ear (ears creature)] rlm@164: (hearing-fn creature ear))) rlm@162: rlm@189: (defn view-hearing rlm@189: "Creates a function which accepts a list of auditory data and rlm@189: display each element of the list to the screen as an image." rlm@189: [] rlm@189: (view-sense rlm@189: (fn [[coords sensor-data]] rlm@189: (let [height 50 rlm@189: image (BufferedImage. (count coords) height rlm@189: BufferedImage/TYPE_INT_RGB)] rlm@189: (dorun rlm@189: (for [x (range (count coords))] rlm@189: (dorun rlm@189: (for [y (range height)] rlm@189: (let [raw-sensor (sensor-data x)] rlm@189: (.setRGB image x y (gray raw-sensor))))))) rlm@189: image)))) rlm@189: rlm@162: #+end_src rlm@162: rlm@189: #+results: ears rlm@189: : #'cortex.hearing/hearing! rlm@189: rlm@162: * Example rlm@162: rlm@162: #+name: test-hearing rlm@162: #+begin_src clojure :results silent rlm@162: (ns cortex.test.hearing rlm@162: (:use (cortex world util hearing)) rlm@162: (:import (com.jme3.audio AudioNode Listener)) rlm@162: (:import com.jme3.scene.Node rlm@162: com.jme3.system.AppSettings)) rlm@162: rlm@162: (defn setup-fn [world] rlm@162: (let [listener (Listener.)] rlm@162: (add-ear world listener #(println-repl (nth % 0))))) rlm@162: rlm@162: (defn play-sound [node world value] rlm@162: (if (not value) rlm@162: (do rlm@162: (.playSource (.getAudioRenderer world) node)))) rlm@162: rlm@162: (defn test-basic-hearing [] rlm@162: (let [node1 (AudioNode. (asset-manager) "Sounds/pure.wav" false false)] rlm@162: (world rlm@162: (Node.) rlm@162: {"key-space" (partial play-sound node1)} rlm@162: setup-fn rlm@162: no-op))) rlm@162: rlm@162: (defn test-advanced-hearing rlm@162: "Testing hearing: rlm@162: You should see a blue sphere flying around several rlm@162: cubes. As the sphere approaches each cube, it turns rlm@162: green." rlm@162: [] rlm@162: (doto (com.aurellem.capture.examples.Advanced.) rlm@162: (.setSettings rlm@162: (doto (AppSettings. true) rlm@162: (.setAudioRenderer "Send"))) rlm@162: (.setShowSettings false) rlm@162: (.setPauseOnLostFocus false))) rlm@162: rlm@162: #+end_src rlm@162: rlm@162: This extremely basic program prints out the first sample it encounters rlm@162: at every time stamp. You can see the rendered sound being printed at rlm@162: the REPL. rlm@162: rlm@162: - As a bonus, this method of capturing audio for AI can also be used rlm@162: to capture perfect audio from a jMonkeyEngine application, for use rlm@162: in demos and the like. rlm@162: rlm@162: rlm@162: * COMMENT Code Generation rlm@162: rlm@163: #+begin_src clojure :tangle ../src/cortex/hearing.clj rlm@162: <> rlm@162: #+end_src rlm@162: rlm@162: #+begin_src clojure :tangle ../src/cortex/test/hearing.clj rlm@162: <> rlm@162: #+end_src rlm@162: rlm@162: #+begin_src C :tangle ../../audio-send/Alc/backends/send.c rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: <> rlm@162: #+end_src rlm@162: rlm@162: