Mercurial > cortex
view org/worm_learn.clj @ 411:a331d5ff73e0
saving progress for the night. completed self-organizing touch, still working on stream predicates.
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Tue, 18 Mar 2014 23:04:48 -0400 |
parents | e6a7e80f885a |
children | 54ef2e06c3ef |
line wrap: on
line source
1 (ns org.aurellem.worm-learn2 "General worm creation framework."3 {:author "Robert McIntyre"}4 (:use (cortex world util import body sense5 hearing touch vision proprioception movement6 test))7 (:import (com.jme3.math ColorRGBA Vector3f))8 (:import java.io.File)9 (:import com.jme3.audio.AudioNode)10 (:import com.aurellem.capture.RatchetTimer)11 (:import (com.aurellem.capture Capture IsoTimer))12 (:import (com.jme3.math Vector3f ColorRGBA)))14 (use 'clojure.pprint)15 (use 'clojure.set)16 (dorun (cortex.import/mega-import-jme3))17 (rlm.rlm-commands/help)19 (load-bullet)21 (def hand "Models/test-creature/hand.blend")23 (defn worm-model []24 (load-blender-model "Models/worm/worm.blend"))26 (def output-base (File. "/home/r/proj/cortex/render/worm-learn/curl"))29 (defn motor-control-program30 "Create a function which will execute the motor script"31 [muscle-labels32 script]33 (let [current-frame (atom -1)34 keyed-script (group-by first script)35 current-forces (atom {}) ]36 (fn [effectors]37 (let [indexed-effectors (vec effectors)]38 (dorun39 (for [[_ part force] (keyed-script (swap! current-frame inc))]40 (swap! current-forces (fn [m] (assoc m part force)))))41 (doall (map (fn [effector power]42 (effector (int power)))43 effectors44 (map #(@current-forces % 0) muscle-labels)))))))46 (defn worm-direct-control47 "Create keybindings and a muscle control program that will enable48 the user to control the worm via the keyboard."49 [muscle-labels activation-strength]50 (let [strengths (mapv (fn [_] (atom 0)) muscle-labels)51 activator52 (fn [n]53 (fn [world pressed?]54 (let [strength (if pressed? activation-strength 0)]55 (swap! (nth strengths n) (constantly strength)))))56 activators57 (map activator (range (count muscle-labels)))58 worm-keys59 ["key-f" "key-r"60 "key-g" "key-t"61 "key-y" "key-h"62 "key-j" "key-u"63 "key-i" "key-k"64 "key-o" "key-l"]]65 {:motor-control66 (fn [effectors]67 (doall68 (map (fn [strength effector]69 (effector (deref strength)))70 strengths effectors)))71 :keybindings72 ;; assume muscles are listed in pairs and map them to keys.73 (zipmap worm-keys activators)}))75 ;; These are scripts that direct the worm to move in two radically76 ;; different patterns -- a sinusoidal wiggling motion, and a curling77 ;; motions that causes the worm to form a circle.79 (def curl-script80 [[370 :d-up 40]81 [600 :d-up 0]])83 (def period 18)85 (def worm-muscle-labels86 [:base-up :base-down87 :a-down :a-up88 :b-up :b-down89 :c-down :c-up90 :d-up :d-down])92 (defn gen-wiggle [[flexor extensor :as muscle-pair] time-base]93 (let [period period94 power 45]95 [[time-base flexor power]96 [(+ time-base period) flexor 0]97 [(+ time-base period 1) extensor power]98 [(+ time-base (+ (* 2 period) 2)) extensor 0]]))100 (def wiggle-script101 (mapcat gen-wiggle (repeat 4000 [:a-down :a-up])102 (range 100 1000000 (+ 3 (* period 2)))))105 ;; Normally, we'd use unsupervised/supervised machine learning to pick106 ;; out the defining features of the different actions available to the107 ;; worm. For this project, I am going to explicitely define functions108 ;; that recognize curling and wiggling respectively. These functions109 ;; are defined using all the information available from an embodied110 ;; simulation of the action. Note how much easier they are to define111 ;; than if I only had vision to work with. Things like scale/position112 ;; invariance are complete non-issues here. This is the advantage of113 ;; body-centered action recognition and what I hope to show with this114 ;; thesis.117 (defn straight?118 "Is the worm straight?"119 [experiences]120 (every?121 (fn [[_ _ bend]]122 (< (Math/sin bend) 0.05))123 (:proprioception (peek experiences))))125 (defn curled?126 "Is the worm curled up?"127 [experiences]128 (every?129 (fn [[_ _ bend]]130 (> (Math/sin bend) 0.64))131 (:proprioception (peek experiences))))133 (defn grand-circle?134 "Does the worm form a majestic circle (one end touching the other)?"135 [experiences]136 (and (curled? experiences)137 true)) ;; TODO: add code here.139 (defn vector:last-n [v n]140 (let [c (count v)]141 (if (< c n) v142 (subvec v (- c n) c))))144 (defn touch-average [[coords touch]]145 (/ (average (map first touch)) (average (map second touch))))147 (defn rect-region [[x0 y0] [x1 y1]]148 (vec149 (for [x (range x0 (inc x1))150 y (range y0 (inc y1))]151 [x y])))153 (def worm-segment-touch-bottom (rect-region [8 15] [14 22]))155 (defn contact156 "Determine how much contact a particular worm segment has with157 other objects. Returns a value between 0 and 1, where 1 is full158 contact and 0 is no contact."159 [[coords contact :as touch]]160 (-> (zipmap coords contact)161 (select-keys worm-segment-touch-bottom)162 (vals)163 (#(map first %))164 (average)165 (* 10)166 (- 1)167 (Math/abs)))169 (defn wiggling?170 "Is the worm wiggling?"171 [experiences]172 (vector:last-n experiences 200)174 )176 (def standard-world-view177 [(Vector3f. 4.207176, -3.7366982, 3.0816958)178 (Quaternion. 0.11118768, 0.87678415, 0.24434438, -0.3989771)])180 (def worm-side-view181 [(Vector3f. 4.207176, -3.7366982, 3.0816958)182 (Quaternion. -0.11555642, 0.88188726, -0.2854942, -0.3569518)])184 (def degenerate-worm-view185 [(Vector3f. -0.0708936, -8.570261, 2.6487997)186 (Quaternion. -2.318909E-4, 0.9985348, 0.053941682, 0.004291452)])188 (defn worm-world-defaults []189 (let [direct-control (worm-direct-control worm-muscle-labels 40)]190 {:view worm-side-view191 :motor-control (:motor-control direct-control)192 :keybindings (:keybindings direct-control)193 :record nil194 :experiences nil195 :worm-model worm-model196 :end-frame nil}))198 (defn dir! [file]199 (if-not (.exists file)200 (.mkdir file))201 file)203 (defn record-experience! [experiences data]204 (swap! experiences #(conj % data)))206 (defn worm-world207 [& {:keys [record motor-control keybindings view experiences208 worm-model end-frame] :as settings}]209 (let [{:keys [record motor-control keybindings view experiences210 worm-model end-frame]}211 (merge (worm-world-defaults) settings)212 worm (doto (worm-model) (body!))213 touch (touch! worm)214 prop (proprioception! worm)215 muscles (movement! worm)217 touch-display (view-touch)218 prop-display (view-proprioception)219 muscle-display (view-movement)221 floor (box 10 1 10 :position (Vector3f. 0 -10 0)222 :color ColorRGBA/Gray :mass 0)223 timer (IsoTimer. 60)]225 (world226 (nodify [worm floor])227 (merge standard-debug-controls keybindings)228 (fn [world]229 (position-camera world view)230 (.setTimer world timer)231 (display-dilated-time world timer)232 (if record233 (Capture/captureVideo234 world235 (dir! (File. record "main-view"))))236 (speed-up world)237 (light-up-everything world))238 (fn [world tpf]239 (if (and end-frame (> (.getTime timer) end-frame))240 (.stop world))241 (let [muscle-data (motor-control muscles)242 proprioception-data (prop)243 touch-data (map #(% (.getRootNode world)) touch)]244 (when experiences245 (record-experience!246 experiences {:touch touch-data247 :proprioception proprioception-data248 :muscle muscle-data})249 ;;(if (curled? @experiences) (println "Curled"))250 ;;(if (straight? @experiences) (println "Straight"))251 ;; (println-repl252 ;; (apply format "%.2f %.2f %.2f %.2f %.2f\n"253 ;; (map contact touch-data)))255 )256 (muscle-display257 muscle-data258 (if record (dir! (File. record "muscle"))))259 (prop-display260 proprioception-data261 (if record (dir! (File. record "proprio"))))262 (touch-display263 touch-data264 (if record (dir! (File. record "touch")))))))))