view org/worm_learn.clj @ 408:3b4012b42611

completed demonstration showing automatic partitioning of touch space based on experience.
author Robert McIntyre <rlm@mit.edu>
date Tue, 18 Mar 2014 21:28:04 -0400
parents bd6d03596ea8
children e6a7e80f885a
line wrap: on
line source
1 (ns org.aurellem.worm-learn
2 "General worm creation framework."
3 {:author "Robert McIntyre"}
4 (:use (cortex world util import body sense
5 hearing touch vision proprioception movement
6 test))
7 (:import (com.jme3.math ColorRGBA Vector3f))
8 (:import java.io.File)
9 (:import com.jme3.audio.AudioNode)
10 (:import com.aurellem.capture.RatchetTimer)
11 (:import (com.aurellem.capture Capture IsoTimer))
12 (:import (com.jme3.math Vector3f ColorRGBA)))
14 (use 'clojure.pprint)
15 (use 'clojure.set)
16 (dorun (cortex.import/mega-import-jme3))
17 (rlm.rlm-commands/help)
19 (load-bullet)
21 (def hand "Models/test-creature/hand.blend")
23 (defn worm-model []
24 (load-blender-model "Models/worm/worm.blend"))
26 (def output-base (File. "/home/r/proj/cortex/render/worm-learn/curl"))
29 (defn motor-control-program
30 "Create a function which will execute the motor script"
31 [muscle-labels
32 script]
33 (let [current-frame (atom -1)
34 keyed-script (group-by first script)
35 current-forces (atom {}) ]
36 (fn [effectors]
37 (let [indexed-effectors (vec effectors)]
38 (dorun
39 (for [[_ part force] (keyed-script (swap! current-frame inc))]
40 (swap! current-forces (fn [m] (assoc m part force)))))
41 (doall (map (fn [effector power]
42 (effector (int power)))
43 effectors
44 (map #(@current-forces % 0) muscle-labels)))))))
46 (defn worm-direct-control
47 "Create keybindings and a muscle control program that will enable
48 the user to control the worm via the keyboard."
49 [muscle-labels activation-strength]
50 (let [strengths (mapv (fn [_] (atom 0)) muscle-labels)
51 activator
52 (fn [n]
53 (fn [world pressed?]
54 (let [strength (if pressed? activation-strength 0)]
55 (swap! (nth strengths n) (constantly strength)))))
56 activators
57 (map activator (range (count muscle-labels)))
58 worm-keys
59 ["key-f" "key-r"
60 "key-g" "key-t"
61 "key-y" "key-h"
62 "key-j" "key-u"
63 "key-i" "key-k"
64 "key-o" "key-l"]]
65 {:motor-control
66 (fn [effectors]
67 (doall
68 (map (fn [strength effector]
69 (effector (deref strength)))
70 strengths effectors)))
71 :keybindings
72 ;; assume muscles are listed in pairs and map them to keys.
73 (zipmap worm-keys activators)}))
75 ;; These are scripts that direct the worm to move in two radically
76 ;; different patterns -- a sinusoidal wiggling motion, and a curling
77 ;; motions that causes the worm to form a circle.
79 (def curl-script
80 [[370 :d-up 40]
81 [600 :d-up 0]])
83 (def period 18)
85 (def worm-muscle-labels
86 [:base-up :base-down
87 :a-down :a-up
88 :b-up :b-down
89 :c-down :c-up
90 :d-up :d-down])
92 (defn gen-wiggle [[flexor extensor :as muscle-pair] time-base]
93 (let [period period
94 power 45]
95 [[time-base flexor power]
96 [(+ time-base period) flexor 0]
97 [(+ time-base period 1) extensor power]
98 [(+ time-base (+ (* 2 period) 2)) extensor 0]]))
100 (def wiggle-script
101 (mapcat gen-wiggle (repeat 4000 [:a-down :a-up])
102 (range 100 1000000 (+ 3 (* period 2)))))
105 ;; Normally, we'd use unsupervised/supervised machine learning to pick
106 ;; out the defining features of the different actions available to the
107 ;; worm. For this project, I am going to explicitely define functions
108 ;; that recognize curling and wiggling respectively. These functions
109 ;; are defined using all the information available from an embodied
110 ;; simulation of the action. Note how much easier they are to define
111 ;; than if I only had vision to work with. Things like scale/position
112 ;; invariance are complete non-issues here. This is the advantage of
113 ;; body-centered action recognition and what I hope to show with this
114 ;; thesis.
117 (defn straight?
118 "Is the worm straight?"
119 [experiences]
120 (every?
121 (fn [[_ _ bend]]
122 (< (Math/sin bend) 0.05))
123 (:proprioception (peek experiences))))
125 (defn curled?
126 "Is the worm curled up?"
127 [experiences]
128 (every?
129 (fn [[_ _ bend]]
130 (> (Math/sin bend) 0.64))
131 (:proprioception (peek experiences))))
133 (defn grand-circle?
134 "Does the worm form a majestic circle (one end touching the other)?"
135 [experiences]
136 (and (curled? experiences)
137 true)) ;; TODO: add code here.
139 (defn vector:last-n [v n]
140 (let [c (count v)]
141 (if (< c n) v
142 (subvec v (- c n) c))))
144 (defn touch-average [[coords touch]]
145 (/ (average (map first touch)) (average (map second touch))))
147 (def worm-segment-touch-bottom
148 [[8 15] [8 16] [8 17] [8 18] [8 19] [8 20] [8 21] [8 22] [9 15]
149 [9 16] [9 17] [9 18] [9 19] [9 20] [9 21] [9 22] [10 15] [10 16]
150 [10 17] [10 18] [10 19] [10 20] [10 21] [10 22] [11 15] [11 16]
151 [11 17] [11 18] [11 19] [11 20] [11 21] [11 22] [12 15] [12 16]
152 [12 17] [12 18] [12 19] [12 20] [12 21] [12 22] [13 15] [13 16]
153 [13 17] [13 18] [13 19] [13 20] [13 21] [13 22] [14 15] [14 16]
154 [14 17] [14 18] [14 19] [14 20] [14 21] [14 22]])
158 (defn floor-contact [[coords contact :as touch]]
159 (let [raw-average
160 (average
161 (map
162 first
163 (vals
164 (select-keys
165 (zipmap coords contact)
166 ))))]
167 (Math/abs (- 1. (* 10 raw-average)))))
170 (defn wiggling?
171 "Is the worm wiggling?"
172 [experiences]
173 (vector:last-n experiences 200)
175 )
177 (def standard-world-view
178 [(Vector3f. 4.207176, -3.7366982, 3.0816958)
179 (Quaternion. 0.11118768, 0.87678415, 0.24434438, -0.3989771)])
181 (def worm-side-view
182 [(Vector3f. 4.207176, -3.7366982, 3.0816958)
183 (Quaternion. -0.11555642, 0.88188726, -0.2854942, -0.3569518)])
185 (def degenerate-worm-view
186 [(Vector3f. -0.0708936, -8.570261, 2.6487997)
187 (Quaternion. -2.318909E-4, 0.9985348, 0.053941682, 0.004291452)])
189 (defn worm-world-defaults []
190 (let [direct-control (worm-direct-control worm-muscle-labels 40)]
191 {:view worm-side-view
192 :motor-control (:motor-control direct-control)
193 :keybindings (:keybindings direct-control)
194 :record nil
195 :experiences nil
196 :worm-model worm-model
197 :end-frame nil}))
200 (defn dir! [file]
201 (if (not (.exists file))
202 (.mkdir file))
203 file)
205 (defn record-experience! [experiences data]
206 (swap! experiences #(conj % data)))
208 (defn worm-world
209 [& {:keys [record motor-control keybindings view experiences
210 worm-model end-frame] :as settings}]
211 (let [{:keys [record motor-control keybindings view experiences
212 worm-model end-frame]}
213 (merge (worm-world-defaults) settings)
214 worm (doto (worm-model) (body!))
215 touch (touch! worm)
216 prop (proprioception! worm)
217 muscles (movement! worm)
219 touch-display (view-touch)
220 prop-display (view-proprioception)
221 muscle-display (view-movement)
223 floor (box 10 1 10 :position (Vector3f. 0 -10 0)
224 :color ColorRGBA/Gray :mass 0)
225 timer (IsoTimer. 60)]
227 (world
228 (nodify [worm floor])
229 (merge standard-debug-controls keybindings)
230 (fn [world]
231 (position-camera world view)
232 (.setTimer world timer)
233 (display-dilated-time world timer)
234 (if record
235 (Capture/captureVideo
236 world
237 (dir! (File. record "main-view"))))
238 (speed-up world)
239 (light-up-everything world))
240 (fn [world tpf]
241 (if (> (.getTime timer) end-frame)
242 (.stop world))
243 (let [muscle-data (motor-control muscles)
244 proprioception-data (prop)
245 touch-data (map #(% (.getRootNode world)) touch)]
246 (when experiences
247 (record-experience!
248 experiences {:touch touch-data
249 :proprioception proprioception-data
250 :muscle muscle-data})
251 ;;(if (curled? @experiences) (println "Curled"))
252 ;;(if (straight? @experiences) (println "Straight"))
253 ;; (println-repl
254 ;; (apply format "%.2f %.2f %.2f %.2f %.2f\n"
255 ;; (map floor-contact touch-data)))
257 )
258 (muscle-display
259 muscle-data
260 (if record (dir! (File. record "muscle"))))
261 (prop-display
262 proprioception-data
263 (if record (dir! (File. record "proprio"))))
264 (touch-display
265 touch-data
266 (if record (dir! (File. record "touch")))))))))
269 ;; A demonstration of self organiging touch maps through experience.
271 (def single-worm-segment-view
272 [(Vector3f. 2.0681207, -6.1406755, 1.6106138)
273 (Quaternion. -0.15558705, 0.843615, -0.3428654, -0.38281822)])
275 (def worm-single-segment-muscle-labels
276 [:lift-1 :lift-2 :roll-1 :roll-2])
278 (defn touch-kinesthetics []
279 [[170 :lift-1 40]
280 [190 :lift-1 20]
281 [206 :lift-1 0]
283 [400 :lift-2 40]
284 [410 :lift-2 0]
286 [570 :lift-2 40]
287 [590 :lift-2 20]
288 [606 :lift-2 0]
290 [800 :lift-1 30]
291 [809 :lift-1 0]
293 [900 :roll-2 40]
294 [905 :roll-2 20]
295 [910 :roll-2 0]
297 [1000 :roll-2 40]
298 [1005 :roll-2 20]
299 [1010 :roll-2 0]
301 [1100 :roll-2 40]
302 [1105 :roll-2 20]
303 [1110 :roll-2 0]
304 ])
306 (defn single-worm-segment []
307 (load-blender-model "Models/worm/worm-single-segment.blend"))
309 (defn worm-segment-defaults []
310 (let [direct-control (worm-direct-control worm-muscle-labels 40)]
311 (merge (worm-world-defaults)
312 {:worm-model single-worm-segment
313 :view single-worm-segment-view
314 :motor-control
315 (motor-control-program
316 worm-single-segment-muscle-labels
317 (touch-kinesthetics))
318 :end-frame 1200})))
320 (def full-contact [(float 0.0) (float 0.1)])
322 (defn pure-touch?
323 "This is worm specific code to determine if a large region of touch
324 sensors is either all on or all off."
325 [[coords touch :as touch-data]]
326 (= (set (map first touch)) (set full-contact)))
328 (defn remove-similar
329 [coll]
330 (loop [result () coll (sort-by (comp - count) coll)]
331 (if (empty? coll) result
332 (let [x (first coll)
333 xs (rest coll)
334 c (count x)]
335 (if (some
336 (fn [other-set]
337 (let [oc (count other-set)]
338 (< (- (count (union other-set x)) c) (* oc 0.1))))
339 xs)
340 (recur result xs)
341 (recur (cons x result) xs))))))
344 (defn rect-region [[x0 y0] [x1 y1]]
345 (vec
346 (for [x (range x0 (inc x1))
347 y (range y0 (inc y1))]
348 [x y])))
350 (def all-touch-coordinates
351 (concat
352 (rect-region [0 15] [7 22])
353 (rect-region [8 0] [14 29])
354 (rect-region [15 15] [22 22])))
356 (defn view-touch-region [coords]
357 (let [touched-region
358 (reduce
359 (fn [m k]
360 (assoc m k [0.0 0.1]))
361 (zipmap all-touch-coordinates (repeat [0.1 0.1])) coords)
362 data
363 [[(vec (keys touched-region)) (vec (vals touched-region))]]
364 touch-display (view-touch)]
365 (touch-display data)
366 (touch-display data)))
368 (defn learn-touch-regions []
369 (let [experiences (atom [])
370 world (apply-map
371 worm-world
372 (assoc (worm-segment-defaults)
373 :experiences experiences))]
374 (run-world world)
375 (->>
376 @experiences
377 (drop 175)
378 ;; access the single segment's touch data
379 (map (comp first :touch))
380 ;; only deal with "pure" touch data to determine surfaces
381 (filter pure-touch?)
382 ;; associate coordinates with touch values
383 (map (partial apply zipmap))
384 ;; select those regions where contact is being made
385 (map (partial group-by second))
386 (map #(get % full-contact))
387 (map (partial map first))
388 ;; remove redundant/subset regions
389 (map set)
390 remove-similar)))
392 (defn learn-and-view-touch-regions []
393 (map view-touch-region
394 (learn-touch-regions)))