Mercurial > cortex
view org/worm_learn.clj @ 418:027707c75f39
saving progress for the night.
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Thu, 20 Mar 2014 00:24:46 -0400 |
parents | f689967c2545 |
children | dd40244255d4 |
line wrap: on
line source
1 (ns org.aurellem.worm-learn2 "General worm creation framework."3 {:author "Robert McIntyre"}4 (:use (cortex world util import body sense5 hearing touch vision proprioception movement6 test))7 (:import (com.jme3.math ColorRGBA Vector3f))8 (:import java.io.File)9 (:import com.jme3.audio.AudioNode)10 (:import com.aurellem.capture.RatchetTimer)11 (:import (com.aurellem.capture Capture IsoTimer))12 (:import (com.jme3.math Vector3f ColorRGBA)))14 (import org.apache.commons.math3.transform.TransformType)15 (import org.apache.commons.math3.transform.FastFourierTransformer)16 (import org.apache.commons.math3.transform.DftNormalization)18 (use 'clojure.pprint)19 (use 'clojure.set)20 (dorun (cortex.import/mega-import-jme3))21 (rlm.rlm-commands/help)23 (load-bullet)25 (def hand "Models/test-creature/hand.blend")27 (defn worm-model []28 (load-blender-model "Models/worm/worm.blend"))30 (def output-base (File. "/home/r/proj/cortex/render/worm-learn/curl"))33 (defn motor-control-program34 "Create a function which will execute the motor script"35 [muscle-labels36 script]37 (let [current-frame (atom -1)38 keyed-script (group-by first script)39 current-forces (atom {}) ]40 (fn [effectors]41 (let [indexed-effectors (vec effectors)]42 (dorun43 (for [[_ part force] (keyed-script (swap! current-frame inc))]44 (swap! current-forces (fn [m] (assoc m part force)))))45 (doall (map (fn [effector power]46 (effector (int power)))47 effectors48 (map #(@current-forces % 0) muscle-labels)))))))50 (defn worm-direct-control51 "Create keybindings and a muscle control program that will enable52 the user to control the worm via the keyboard."53 [muscle-labels activation-strength]54 (let [strengths (mapv (fn [_] (atom 0)) muscle-labels)55 activator56 (fn [n]57 (fn [world pressed?]58 (let [strength (if pressed? activation-strength 0)]59 (swap! (nth strengths n) (constantly strength)))))60 activators61 (map activator (range (count muscle-labels)))62 worm-keys63 ["key-f" "key-r"64 "key-g" "key-t"65 "key-h" "key-y"66 "key-j" "key-u"67 "key-k" "key-i"68 "key-l" "key-o"]]69 {:motor-control70 (fn [effectors]71 (doall72 (map (fn [strength effector]73 (effector (deref strength)))74 strengths effectors)))75 :keybindings76 ;; assume muscles are listed in pairs and map them to keys.77 (zipmap worm-keys activators)}))79 ;; These are scripts that direct the worm to move in two radically80 ;; different patterns -- a sinusoidal wiggling motion, and a curling81 ;; motions that causes the worm to form a circle.83 (def curl-script84 [[150 :d-flex 40]85 [250 :d-flex 0]])87 (def period 18)89 (def worm-muscle-labels90 [:base-ex :base-flex91 :a-ex :a-flex92 :b-ex :b-flex93 :c-ex :c-flex94 :d-ex :d-flex])96 (defn gen-wiggle [[flexor extensor :as muscle-pair] time-base]97 (let [period period98 power 45]99 [[time-base flexor power]100 [(+ time-base period) flexor 0]101 [(+ time-base period 1) extensor power]102 [(+ time-base (+ (* 2 period) 2)) extensor 0]]))104 (def wiggle-script105 (mapcat gen-wiggle (repeat 4000 [:a-ex :a-flex])106 (range 100 1000000 (+ 3 (* period 2)))))109 (defn shift-script [shift script]110 (map (fn [[time label power]] [(+ time shift) label power])111 script))113 (def do-all-the-things114 (concat115 curl-script116 [[300 :d-ex 40]117 [320 :d-ex 0]]118 (shift-script 280 (take 16 wiggle-script))))120 ;; Normally, we'd use unsupervised/supervised machine learning to pick121 ;; out the defining features of the different actions available to the122 ;; worm. For this project, I am going to explicitely define functions123 ;; that recognize curling and wiggling respectively. These functions124 ;; are defined using all the information available from an embodied125 ;; simulation of the action. Note how much easier they are to define126 ;; than if I only had vision to work with. Things like scale/position127 ;; invariance are complete non-issues here. This is the advantage of128 ;; body-centered action recognition and what I hope to show with this129 ;; thesis.132 ;; curled? relies on proprioception, resting? relies on touch,133 ;; wiggling? relies on a fourier analysis of muscle contraction, and134 ;; grand-circle? relies on touch and reuses curled? as a gaurd.136 (defn curled?137 "Is the worm curled up?"138 [experiences]139 (every?140 (fn [[_ _ bend]]141 (> (Math/sin bend) 0.64))142 (:proprioception (peek experiences))))144 (defn touch-average [[coords touch]]145 (/ (average (map first touch)) (average (map second touch))))147 (defn rect-region [[x0 y0] [x1 y1]]148 (vec149 (for [x (range x0 (inc x1))150 y (range y0 (inc y1))]151 [x y])))153 (def worm-segment-bottom (rect-region [8 15] [14 22]))155 (defn contact156 "Determine how much contact a particular worm segment has with157 other objects. Returns a value between 0 and 1, where 1 is full158 contact and 0 is no contact."159 [touch-region [coords contact :as touch]]160 (-> (zipmap coords contact)161 (select-keys touch-region)162 (vals)163 (#(map first %))164 (average)165 (* 10)166 (- 1)167 (Math/abs)))169 (defn resting?170 "Is the worm straight?"171 [experiences]172 (every?173 (fn [touch-data]174 (< 0.9 (contact worm-segment-bottom touch-data)))175 (:touch (peek experiences))))177 (defn vector:last-n [v n]178 (let [c (count v)]179 (if (< c n) v180 (subvec v (- c n) c))))182 (defn fft [nums]183 (map184 #(.getReal %)185 (.transform186 (FastFourierTransformer. DftNormalization/STANDARD)187 (double-array nums) TransformType/FORWARD)))189 (def indexed (partial map-indexed vector))191 (defn max-indexed [s]192 (first (sort-by (comp - second) (indexed s))))194 (defn wiggling?195 "Is the worm wiggling?"196 [experiences]197 (let [analysis-interval 0x40]198 (when (> (count experiences) analysis-interval)199 (let [a-flex 3200 a-ex 2201 muscle-activity202 (map :muscle (vector:last-n experiences analysis-interval))203 base-activity204 (map #(- (% a-flex) (% a-ex)) muscle-activity)]205 (= 2206 (first207 (max-indexed208 (map #(Math/abs %)209 (take 20 (fft base-activity))))))))))211 (def worm-segment-bottom-tip (rect-region [15 15] [22 22]))213 (def worm-segment-top-tip (rect-region [0 15] [7 22]))215 (defn grand-circle?216 "Does the worm form a majestic circle (one end touching the other)?"217 [experiences]218 (and true;; (curled? experiences)219 (let [worm-touch (:touch (peek experiences))220 tail-touch (worm-touch 0)221 head-touch (worm-touch 4)]222 (and (< 0.55 (contact worm-segment-bottom-tip tail-touch))223 (< 0.55 (contact worm-segment-top-tip head-touch))))))226 (declare phi-space phi-scan)228 (defn next-phi-states229 "Given proprioception data, determine the most likely next sensory230 pattern from previous experience."231 [proprio phi-space phi-scan]232 (if-let [results (phi-scan proprio)]233 (mapv phi-space234 (filter (partial > (count phi-space))235 (map inc results)))))237 (defn debug-experience238 [experiences]239 (cond240 (grand-circle? experiences) (println "Grand Circle")241 (curled? experiences) (println "Curled")242 (wiggling? experiences) (println "Wiggling")243 (resting? experiences) (println "Resting")))246 (defn debug-experience247 [experiences]248 ;; (println-repl249 ;; (count (next-phi-states (:proprioception (peek experiences))250 ;; phi-space phi-scan)))251 (cond252 (grand-circle? experiences) (println "Grand Circle")253 (curled? experiences) (println "Curled")254 (wiggling? experiences) (println "Wiggling")255 (resting? experiences) (println "Resting"))256 )262 (def standard-world-view263 [(Vector3f. 4.207176, -3.7366982, 3.0816958)264 (Quaternion. 0.11118768, 0.87678415, 0.24434438, -0.3989771)])266 (def worm-side-view267 [(Vector3f. 4.207176, -3.7366982, 3.0816958)268 (Quaternion. -0.11555642, 0.88188726, -0.2854942, -0.3569518)])270 (def degenerate-worm-view271 [(Vector3f. -0.0708936, -8.570261, 2.6487997)272 (Quaternion. -2.318909E-4, 0.9985348, 0.053941682, 0.004291452)])274 (defn worm-world-defaults []275 (let [direct-control (worm-direct-control worm-muscle-labels 40)]276 {:view worm-side-view277 :motor-control (:motor-control direct-control)278 :keybindings (:keybindings direct-control)279 :record nil280 :experiences (atom [])281 :experience-watch debug-experience282 :worm-model worm-model283 :end-frame nil}))285 (defn dir! [file]286 (if-not (.exists file)287 (.mkdir file))288 file)290 (defn record-experience! [experiences data]291 (swap! experiences #(conj % data)))293 (defn worm-world294 [& {:keys [record motor-control keybindings view experiences295 worm-model end-frame experience-watch] :as settings}]296 (let [{:keys [record motor-control keybindings view experiences297 worm-model end-frame experience-watch]}298 (merge (worm-world-defaults) settings)299 worm (doto (worm-model) (body!))300 touch (touch! worm)301 prop (proprioception! worm)302 muscles (movement! worm)304 touch-display (view-touch)305 prop-display (view-proprioception)306 muscle-display (view-movement)308 floor (box 10 1 10 :position (Vector3f. 0 -10 0)309 :color ColorRGBA/Gray :mass 0)310 timer (IsoTimer. 60)]312 (world313 (nodify [worm floor])314 (merge standard-debug-controls keybindings)315 (fn [world]316 (position-camera world view)317 (.setTimer world timer)318 (display-dilated-time world timer)319 (if record320 (Capture/captureVideo321 world322 (dir! (File. record "main-view"))))323 (speed-up world)324 (light-up-everything world))325 (fn [world tpf]326 (if (and end-frame (> (.getTime timer) end-frame))327 (.stop world))328 (let [muscle-data (vec (motor-control muscles))329 proprioception-data (prop)330 touch-data (mapv #(% (.getRootNode world)) touch)]331 (when experiences332 (record-experience!333 experiences {:touch touch-data334 :proprioception proprioception-data335 :muscle muscle-data}))336 (when experience-watch337 (experience-watch @experiences))338 (muscle-display339 muscle-data340 (if record (dir! (File. record "muscle"))))341 (prop-display342 proprioception-data343 (if record (dir! (File. record "proprio"))))344 (touch-display345 touch-data346 (if record (dir! (File. record "touch")))))))))350 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;351 ;;;;;;;; Phi-Space ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;352 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;354 (defn generate-phi-space []355 (let [experiences (atom [])]356 (run-world357 (apply-map358 worm-world359 (merge360 (worm-world-defaults)361 {:end-frame 700362 :motor-control363 (motor-control-program worm-muscle-labels do-all-the-things)364 :experiences experiences})))365 @experiences))367 (defn bin [digits]368 (fn [angles]369 (->> angles370 (flatten)371 (map (juxt #(Math/sin %) #(Math/cos %)))372 (flatten)373 (mapv #(Math/round (* % (Math/pow 10 (dec digits))))))))375 ;; k-nearest neighbors with spatial binning. Only returns a result if376 ;; the propriceptive data is within 10% of a previously recorded377 ;; result in all dimensions.378 (defn gen-phi-scan [phi-space]379 (let [bin-keys (map bin [3 2 1])380 bin-maps381 (map (fn [bin-key]382 (group-by383 (comp bin-key :proprioception phi-space)384 (range (count phi-space)))) bin-keys)385 lookups (map (fn [bin-key bin-map]386 (fn [proprio] (bin-map (bin-key proprio))))387 bin-keys bin-maps)]388 (fn lookup [proprio-data]389 (some #(% proprio-data) lookups))))391 (defn init []392 (def phi-space (generate-phi-space))393 (def phi-scan (gen-phi-scan phi-space))394 )