rlm@37
|
1 #+title: Simulated Sense of Touch
|
rlm@0
|
2 #+author: Robert McIntyre
|
rlm@0
|
3 #+email: rlm@mit.edu
|
rlm@37
|
4 #+description: Simulated touch for AI research using JMonkeyEngine and clojure.
|
rlm@37
|
5 #+keywords: simulation, tactile sense, jMonkeyEngine3, clojure
|
rlm@4
|
6 #+SETUPFILE: ../../aurellem/org/setup.org
|
rlm@4
|
7 #+INCLUDE: ../../aurellem/org/level-0.org
|
rlm@0
|
8
|
rlm@229
|
9
|
rlm@229
|
10
|
rlm@37
|
11 * Touch
|
rlm@0
|
12
|
rlm@226
|
13 Touch is critical to navigation and spatial reasoning and as such I
|
rlm@226
|
14 need a simulated version of it to give to my AI creatures.
|
rlm@0
|
15
|
rlm@228
|
16 However, touch in my virtual can not exactly correspond to human touch
|
rlm@228
|
17 because my creatures are made out of completely rigid segments that
|
rlm@228
|
18 don't deform like human skin.
|
rlm@228
|
19
|
rlm@228
|
20 Human skin has a wide array of touch sensors, each of which speciliaze
|
rlm@228
|
21 in detecting different vibrational modes and pressures. These sensors
|
rlm@228
|
22 can integrate a vast expanse of skin (i.e. your entire palm), or a
|
rlm@228
|
23 tiny patch of skin at the tip of your finger. The hairs of the skin
|
rlm@228
|
24 help detect objects before they even come into contact with the skin
|
rlm@228
|
25 proper.
|
rlm@228
|
26
|
rlm@228
|
27 Instead of measuring deformation or vibration, I surround each rigid
|
rlm@228
|
28 part with a plenitude of hair-like objects which do not interact with
|
rlm@228
|
29 the physical world. Physical objects can pass through them with no
|
rlm@228
|
30 effect. The hairs are able to measure contact with other objects, and
|
rlm@228
|
31 constantly report how much of their extent is covered. So, even though
|
rlm@228
|
32 the creature's body parts do not deform, the hairs create a margin
|
rlm@228
|
33 around those body parts which achieves a sense of touch which is a
|
rlm@228
|
34 hybrid between a human's sense of deformation and sense from hairs.
|
rlm@228
|
35
|
rlm@228
|
36 Implementing touch in jMonkeyEngine follows a different techinal route
|
rlm@228
|
37 than vision and hearing. Those two senses piggybacked off
|
rlm@228
|
38 jMonkeyEngine's 3D audio and video rendering subsystems. To simulate
|
rlm@228
|
39 Touch, I use jMonkeyEngine's physics system to execute many small
|
rlm@229
|
40 collision detections, one for each "hair". The placement of the
|
rlm@229
|
41 "hairs" is determined by a UV-mapped image which shows where each hair
|
rlm@229
|
42 should be on the 3D surface of the body.
|
rlm@228
|
43
|
rlm@229
|
44
|
rlm@229
|
45 * Defining Touch Meta-Data in Blender
|
rlm@229
|
46
|
rlm@229
|
47 Each geometry can have a single UV map which describes the position
|
rlm@229
|
48 and length of the "hairs" which will constitute its sense of
|
rlm@229
|
49 touch. This image path is stored under the "touch" key. The image
|
rlm@229
|
50 itself is grayscale, with black meaning a hair length of 0 (no hair is
|
rlm@229
|
51 present) and white meaning a hair length of =scale=, which is a float
|
rlm@229
|
52 stored under the key "scale". If the pixel is gray then the resultant
|
rlm@229
|
53 hair length is linearly interpolated between 0 and =scale=.
|
rlm@229
|
54
|
rlm@0
|
55 #+begin_src clojure
|
rlm@229
|
56 (defn tactile-sensor-profile
|
rlm@229
|
57 "Return the touch-sensor distribution image in BufferedImage format,
|
rlm@229
|
58 or nil if it does not exist."
|
rlm@229
|
59 [#^Geometry obj]
|
rlm@229
|
60 (if-let [image-path (meta-data obj "touch")]
|
rlm@229
|
61 (load-image image-path)))
|
rlm@228
|
62 #+end_src
|
rlm@156
|
63
|
rlm@229
|
64
|
rlm@229
|
65 ** TODO add image showing example touch-uv map
|
rlm@229
|
66 ** TODO add metadata display for worm
|
rlm@229
|
67
|
rlm@228
|
68 * Triangle Manipulation Functions
|
rlm@228
|
69
|
rlm@229
|
70 The rigid bodies which make up a creature have an underlying
|
rlm@229
|
71 =Geometry=, which is a =Mesh= plus a =Material= and other important
|
rlm@229
|
72 data involved with displaying the body.
|
rlm@229
|
73
|
rlm@229
|
74 A =Mesh= is composed of =Triangles=, and each =Triangle= has three
|
rlm@229
|
75 verticies which have coordinates in XYZ space and UV space.
|
rlm@229
|
76
|
rlm@229
|
77 Here, =(triangles)= gets all the triangles which compose a mesh, and
|
rlm@229
|
78 =(triangle-UV-coord)= returns the the UV coordinates of the verticies
|
rlm@229
|
79 of a triangle.
|
rlm@229
|
80
|
rlm@228
|
81 #+begin_src clojure
|
rlm@228
|
82 (defn triangles
|
rlm@228
|
83 "Return a sequence of all the Triangles which compose a given
|
rlm@228
|
84 Geometry."
|
rlm@228
|
85 [#^Geometry geom]
|
rlm@228
|
86 (let
|
rlm@228
|
87 [mesh (.getMesh geom)
|
rlm@228
|
88 triangles (transient [])]
|
rlm@228
|
89 (dorun
|
rlm@228
|
90 (for [n (range (.getTriangleCount mesh))]
|
rlm@228
|
91 (let [tri (Triangle.)]
|
rlm@228
|
92 (.getTriangle mesh n tri)
|
rlm@228
|
93 ;; (.calculateNormal tri)
|
rlm@228
|
94 ;; (.calculateCenter tri)
|
rlm@228
|
95 (conj! triangles tri))))
|
rlm@228
|
96 (persistent! triangles)))
|
rlm@228
|
97
|
rlm@228
|
98 (defn mesh-triangle
|
rlm@228
|
99 "Get the triangle specified by triangle-index from the mesh within
|
rlm@228
|
100 bounds."
|
rlm@228
|
101 [#^Mesh mesh triangle-index]
|
rlm@228
|
102 (let [scratch (Triangle.)]
|
rlm@228
|
103 (.getTriangle mesh triangle-index scratch)
|
rlm@228
|
104 scratch))
|
rlm@228
|
105
|
rlm@228
|
106 (defn triangle-vertex-indices
|
rlm@228
|
107 "Get the triangle vertex indices of a given triangle from a given
|
rlm@228
|
108 mesh."
|
rlm@228
|
109 [#^Mesh mesh triangle-index]
|
rlm@228
|
110 (let [indices (int-array 3)]
|
rlm@228
|
111 (.getTriangle mesh triangle-index indices)
|
rlm@228
|
112 (vec indices)))
|
rlm@228
|
113
|
rlm@228
|
114 (defn vertex-UV-coord
|
rlm@228
|
115 "Get the UV-coordinates of the vertex named by vertex-index"
|
rlm@228
|
116 [#^Mesh mesh vertex-index]
|
rlm@228
|
117 (let [UV-buffer
|
rlm@228
|
118 (.getData
|
rlm@228
|
119 (.getBuffer
|
rlm@228
|
120 mesh
|
rlm@228
|
121 VertexBuffer$Type/TexCoord))]
|
rlm@228
|
122 [(.get UV-buffer (* vertex-index 2))
|
rlm@228
|
123 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
|
rlm@228
|
124
|
rlm@228
|
125 (defn triangle-UV-coord
|
rlm@228
|
126 "Get the UV-cooridnates of the triangle's verticies."
|
rlm@228
|
127 [#^Mesh mesh width height triangle-index]
|
rlm@228
|
128 (map (fn [[u v]] (vector (* width u) (* height v)))
|
rlm@228
|
129 (map (partial vertex-UV-coord mesh)
|
rlm@228
|
130 (triangle-vertex-indices mesh triangle-index))))
|
rlm@228
|
131 #+end_src
|
rlm@228
|
132
|
rlm@228
|
133 * Schrapnel Conversion Functions
|
rlm@229
|
134
|
rlm@229
|
135 It is convienent to treat a =Triangle= as a sequence of verticies, and
|
rlm@229
|
136 a =Vector2f= and =Vector3f= as a sequence of floats. These conversion
|
rlm@229
|
137 functions make this easy. If these classes implemented =Iterable= then
|
rlm@229
|
138 this code would not be necessary. Hopefully they will in the future.
|
rlm@229
|
139
|
rlm@228
|
140 #+begin_src clojure
|
rlm@228
|
141 (defn triangle-seq [#^Triangle tri]
|
rlm@228
|
142 [(.get1 tri) (.get2 tri) (.get3 tri)])
|
rlm@228
|
143
|
rlm@228
|
144 (defn vector3f-seq [#^Vector3f v]
|
rlm@228
|
145 [(.getX v) (.getY v) (.getZ v)])
|
rlm@228
|
146
|
rlm@228
|
147 (defn point->vector2f [[u v]]
|
rlm@228
|
148 (Vector2f. u v))
|
rlm@228
|
149
|
rlm@228
|
150 (defn vector2f->vector3f [v]
|
rlm@228
|
151 (Vector3f. (.getX v) (.getY v) 0))
|
rlm@228
|
152
|
rlm@228
|
153 (defn map-triangle [f #^Triangle tri]
|
rlm@228
|
154 (Triangle.
|
rlm@228
|
155 (f 0 (.get1 tri))
|
rlm@228
|
156 (f 1 (.get2 tri))
|
rlm@228
|
157 (f 2 (.get3 tri))))
|
rlm@228
|
158
|
rlm@228
|
159 (defn points->triangle
|
rlm@228
|
160 "Convert a list of points into a triangle."
|
rlm@228
|
161 [points]
|
rlm@228
|
162 (apply #(Triangle. %1 %2 %3)
|
rlm@228
|
163 (map (fn [point]
|
rlm@228
|
164 (let [point (vec point)]
|
rlm@228
|
165 (Vector3f. (get point 0 0)
|
rlm@228
|
166 (get point 1 0)
|
rlm@228
|
167 (get point 2 0))))
|
rlm@228
|
168 (take 3 points))))
|
rlm@228
|
169 #+end_src
|
rlm@228
|
170
|
rlm@228
|
171 * Triangle Affine Transforms
|
rlm@228
|
172
|
rlm@229
|
173 The position of each hair is stored in a 2D image in UV
|
rlm@229
|
174 coordinates. To place the hair in 3D space we must convert from UV
|
rlm@229
|
175 coordinates to XYZ coordinates. Each =Triangle= has coordinates in
|
rlm@229
|
176 both UV-space and XYZ-space, which defines a unique [[http://mathworld.wolfram.com/AffineTransformation.html ][Affine Transform]]
|
rlm@229
|
177 for translating any coordinate within the UV triangle to the
|
rlm@229
|
178 cooresponding coordinate in the XYZ triangle.
|
rlm@229
|
179
|
rlm@228
|
180 #+begin_src clojure
|
rlm@228
|
181 (defn triangle->matrix4f
|
rlm@228
|
182 "Converts the triangle into a 4x4 matrix: The first three columns
|
rlm@228
|
183 contain the vertices of the triangle; the last contains the unit
|
rlm@228
|
184 normal of the triangle. The bottom row is filled with 1s."
|
rlm@228
|
185 [#^Triangle t]
|
rlm@228
|
186 (let [mat (Matrix4f.)
|
rlm@228
|
187 [vert-1 vert-2 vert-3]
|
rlm@228
|
188 ((comp vec map) #(.get t %) (range 3))
|
rlm@228
|
189 unit-normal (do (.calculateNormal t)(.getNormal t))
|
rlm@228
|
190 vertices [vert-1 vert-2 vert-3 unit-normal]]
|
rlm@228
|
191 (dorun
|
rlm@228
|
192 (for [row (range 4) col (range 3)]
|
rlm@228
|
193 (do
|
rlm@228
|
194 (.set mat col row (.get (vertices row)col))
|
rlm@228
|
195 (.set mat 3 row 1))))
|
rlm@228
|
196 mat))
|
rlm@228
|
197
|
rlm@228
|
198 (defn triangle-transformation
|
rlm@228
|
199 "Returns the affine transformation that converts each vertex in the
|
rlm@228
|
200 first triangle into the corresponding vertex in the second
|
rlm@228
|
201 triangle."
|
rlm@228
|
202 [#^Triangle tri-1 #^Triangle tri-2]
|
rlm@228
|
203 (.mult
|
rlm@228
|
204 (triangle->matrix4f tri-2)
|
rlm@228
|
205 (.invert (triangle->matrix4f tri-1))))
|
rlm@228
|
206 #+end_src
|
rlm@228
|
207
|
rlm@229
|
208 * Triangle Boundaries
|
rlm@229
|
209
|
rlm@229
|
210 For efficiency's sake I will divide the UV-image into small squares
|
rlm@229
|
211 which inscribe each UV-triangle, then extract the points which lie
|
rlm@229
|
212 inside the triangle and map them to 3D-space using
|
rlm@229
|
213 =(triangle-transform)= above. To do this I need a function,
|
rlm@229
|
214 =(inside-triangle?)=, which determines whether a point is inside a
|
rlm@229
|
215 triangle in 2D UV-space.
|
rlm@228
|
216
|
rlm@228
|
217 #+begin_src clojure
|
rlm@229
|
218 (defn convex-bounds
|
rlm@229
|
219 "Returns the smallest square containing the given vertices, as a
|
rlm@229
|
220 vector of integers [left top width height]."
|
rlm@229
|
221 [uv-verts]
|
rlm@229
|
222 (let [xs (map first uv-verts)
|
rlm@229
|
223 ys (map second uv-verts)
|
rlm@229
|
224 x0 (Math/floor (apply min xs))
|
rlm@229
|
225 y0 (Math/floor (apply min ys))
|
rlm@229
|
226 x1 (Math/ceil (apply max xs))
|
rlm@229
|
227 y1 (Math/ceil (apply max ys))]
|
rlm@229
|
228 [x0 y0 (- x1 x0) (- y1 y0)]))
|
rlm@229
|
229
|
rlm@229
|
230 (defn same-side?
|
rlm@229
|
231 "Given the points p1 and p2 and the reference point ref, is point p
|
rlm@229
|
232 on the same side of the line that goes through p1 and p2 as ref is?"
|
rlm@229
|
233 [p1 p2 ref p]
|
rlm@229
|
234 (<=
|
rlm@229
|
235 0
|
rlm@229
|
236 (.dot
|
rlm@229
|
237 (.cross (.subtract p2 p1) (.subtract p p1))
|
rlm@229
|
238 (.cross (.subtract p2 p1) (.subtract ref p1)))))
|
rlm@229
|
239
|
rlm@229
|
240 (defn inside-triangle?
|
rlm@229
|
241 "Is the point inside the triangle?"
|
rlm@229
|
242 {:author "Dylan Holmes"}
|
rlm@229
|
243 [#^Triangle tri #^Vector3f p]
|
rlm@229
|
244 (let [[vert-1 vert-2 vert-3] (triangle-seq tri)]
|
rlm@229
|
245 (and
|
rlm@229
|
246 (same-side? vert-1 vert-2 vert-3 p)
|
rlm@229
|
247 (same-side? vert-2 vert-3 vert-1 p)
|
rlm@229
|
248 (same-side? vert-3 vert-1 vert-2 p))))
|
rlm@229
|
249 #+end_src
|
rlm@229
|
250
|
rlm@229
|
251
|
rlm@229
|
252
|
rlm@229
|
253 * Sensor Related Functions
|
rlm@229
|
254
|
rlm@229
|
255 These functions analyze the touch-sensor-profile image convert the
|
rlm@229
|
256 location of each touch sensor from pixel coordinates to UV-coordinates
|
rlm@229
|
257 and XYZ-coordinates.
|
rlm@229
|
258
|
rlm@229
|
259 #+begin_src clojure
|
rlm@229
|
260 (defn sensors-in-triangle
|
rlm@229
|
261 "Locate the touch sensors in the triangle, returning a map of their
|
rlm@229
|
262 UV and geometry-relative coordinates."
|
rlm@229
|
263 [image mesh tri-index]
|
rlm@229
|
264 (let [width (.getWidth image)
|
rlm@229
|
265 height (.getHeight image)
|
rlm@229
|
266 UV-vertex-coords (triangle-UV-coord mesh width height tri-index)
|
rlm@229
|
267 bounds (convex-bounds UV-vertex-coords)
|
rlm@229
|
268
|
rlm@229
|
269 cutout-triangle (points->triangle UV-vertex-coords)
|
rlm@229
|
270 UV-sensor-coords
|
rlm@229
|
271 (filter (comp (partial inside-triangle? cutout-triangle)
|
rlm@229
|
272 (fn [[u v]] (Vector3f. u v 0)))
|
rlm@229
|
273 (white-coordinates image bounds))
|
rlm@229
|
274 UV->geometry (triangle-transformation
|
rlm@229
|
275 cutout-triangle
|
rlm@229
|
276 (mesh-triangle mesh tri-index))
|
rlm@229
|
277 geometry-sensor-coords
|
rlm@229
|
278 (map (fn [[u v]] (.mult UV->geometry (Vector3f. u v 0)))
|
rlm@229
|
279 UV-sensor-coords)]
|
rlm@229
|
280 {:UV UV-sensor-coords :geometry geometry-sensor-coords}))
|
rlm@229
|
281
|
rlm@229
|
282 (defn-memo locate-feelers
|
rlm@229
|
283 "Search the geometry's tactile UV profile for touch sensors,
|
rlm@229
|
284 returning their positions in geometry-relative coordinates."
|
rlm@229
|
285 [#^Geometry geo]
|
rlm@229
|
286 (let [mesh (.getMesh geo)
|
rlm@229
|
287 num-triangles (.getTriangleCount mesh)]
|
rlm@229
|
288 (if-let [image (tactile-sensor-profile geo)]
|
rlm@229
|
289 (map
|
rlm@229
|
290 (partial sensors-in-triangle image mesh)
|
rlm@229
|
291 (range num-triangles))
|
rlm@229
|
292 (repeat (.getTriangleCount mesh) {:UV nil :geometry nil}))))
|
rlm@229
|
293
|
rlm@229
|
294 (defn-memo touch-topology
|
rlm@229
|
295 "Return a sequence of vectors of the form [x y] describing the
|
rlm@229
|
296 \"topology\" of the tactile sensors. Points that are close together
|
rlm@229
|
297 in the touch-topology are generally close together in the simulation."
|
rlm@229
|
298 [#^Gemoetry geo]
|
rlm@229
|
299 (vec (collapse (reduce concat (map :UV (locate-feelers geo))))))
|
rlm@229
|
300
|
rlm@229
|
301 (defn-memo feeler-coordinates
|
rlm@229
|
302 "The location of the touch sensors in world-space coordinates."
|
rlm@229
|
303 [#^Geometry geo]
|
rlm@229
|
304 (vec (map :geometry (locate-feelers geo))))
|
rlm@228
|
305 #+end_src
|
rlm@228
|
306
|
rlm@228
|
307 * Physics Collision Objects
|
rlm@230
|
308
|
rlm@230
|
309 The "hairs" are actually rays which extend from a point on a
|
rlm@230
|
310 =Triangle= in the =Mesh= normal to the =Triangle's= surface.
|
rlm@230
|
311
|
rlm@228
|
312 #+begin_src clojure
|
rlm@228
|
313 (defn get-ray-origin
|
rlm@228
|
314 "Return the origin which a Ray would have to have to be in the exact
|
rlm@228
|
315 center of a particular Triangle in the Geometry in World
|
rlm@228
|
316 Coordinates."
|
rlm@228
|
317 [geom tri]
|
rlm@228
|
318 (let [new (Vector3f.)]
|
rlm@228
|
319 (.calculateCenter tri)
|
rlm@228
|
320 (.localToWorld geom (.getCenter tri) new) new))
|
rlm@228
|
321
|
rlm@228
|
322 (defn get-ray-direction
|
rlm@228
|
323 "Return the direction which a Ray would have to have to be to point
|
rlm@228
|
324 normal to the Triangle, in coordinates relative to the center of the
|
rlm@228
|
325 Triangle."
|
rlm@228
|
326 [geom tri]
|
rlm@228
|
327 (let [n+c (Vector3f.)]
|
rlm@228
|
328 (.calculateNormal tri)
|
rlm@228
|
329 (.calculateCenter tri)
|
rlm@228
|
330 (.localToWorld
|
rlm@228
|
331 geom
|
rlm@228
|
332 (.add (.getCenter tri) (.getNormal tri)) n+c)
|
rlm@228
|
333 (.subtract n+c (get-ray-origin geom tri))))
|
rlm@228
|
334 #+end_src
|
rlm@228
|
335
|
rlm@228
|
336
|
rlm@228
|
337 * Skin Creation
|
rlm@228
|
338
|
rlm@228
|
339 #+begin_src clojure
|
rlm@178
|
340 (defn touch-fn
|
rlm@178
|
341 "Returns a function which returns tactile sensory data when called
|
rlm@178
|
342 inside a running simulation."
|
rlm@178
|
343 [#^Geometry geo]
|
rlm@156
|
344 (let [feeler-coords (feeler-coordinates geo)
|
rlm@156
|
345 tris (triangles geo)
|
rlm@156
|
346 limit 0.1
|
rlm@156
|
347 ;;results (CollisionResults.)
|
rlm@156
|
348 ]
|
rlm@156
|
349 (if (empty? (touch-topology geo))
|
rlm@156
|
350 nil
|
rlm@156
|
351 (fn [node]
|
rlm@156
|
352 (let [sensor-origins
|
rlm@156
|
353 (map
|
rlm@156
|
354 #(map (partial local-to-world geo) %)
|
rlm@156
|
355 feeler-coords)
|
rlm@156
|
356 triangle-normals
|
rlm@156
|
357 (map (partial get-ray-direction geo)
|
rlm@156
|
358 tris)
|
rlm@156
|
359 rays
|
rlm@156
|
360 (flatten
|
rlm@156
|
361 (map (fn [origins norm]
|
rlm@156
|
362 (map #(doto (Ray. % norm)
|
rlm@156
|
363 (.setLimit limit)) origins))
|
rlm@156
|
364 sensor-origins triangle-normals))]
|
rlm@156
|
365 (vector
|
rlm@156
|
366 (touch-topology geo)
|
rlm@156
|
367 (vec
|
rlm@156
|
368 (for [ray rays]
|
rlm@156
|
369 (do
|
rlm@156
|
370 (let [results (CollisionResults.)]
|
rlm@156
|
371 (.collideWith node ray results)
|
rlm@156
|
372 (let [touch-objects
|
rlm@156
|
373 (filter #(not (= geo (.getGeometry %)))
|
rlm@156
|
374 results)]
|
rlm@156
|
375 (- 255
|
rlm@156
|
376 (if (empty? touch-objects) 255
|
rlm@156
|
377 (rem
|
rlm@156
|
378 (int
|
rlm@156
|
379 (* 255 (/ (.getDistance
|
rlm@156
|
380 (first touch-objects)) limit)))
|
rlm@156
|
381 256))))))))))))))
|
rlm@156
|
382
|
rlm@178
|
383 (defn touch!
|
rlm@178
|
384 "Endow the creature with the sense of touch. Returns a sequence of
|
rlm@178
|
385 functions, one for each body part with a tactile-sensor-proile,
|
rlm@178
|
386 each of which when called returns sensory data for that body part."
|
rlm@178
|
387 [#^Node creature]
|
rlm@178
|
388 (filter
|
rlm@178
|
389 (comp not nil?)
|
rlm@178
|
390 (map touch-fn
|
rlm@178
|
391 (filter #(isa? (class %) Geometry)
|
rlm@178
|
392 (node-seq creature)))))
|
rlm@228
|
393 #+end_src
|
rlm@156
|
394
|
rlm@228
|
395 * Visualizing Touch
|
rlm@228
|
396
|
rlm@228
|
397 #+begin_src clojure
|
rlm@188
|
398 (defn view-touch
|
rlm@189
|
399 "Creates a function which accepts a list of touch sensor-data and
|
rlm@189
|
400 displays each element to the screen."
|
rlm@188
|
401 []
|
rlm@187
|
402 (view-sense
|
rlm@187
|
403 (fn
|
rlm@187
|
404 [[coords sensor-data]]
|
rlm@187
|
405 (let [image (points->image coords)]
|
rlm@187
|
406 (dorun
|
rlm@187
|
407 (for [i (range (count coords))]
|
rlm@187
|
408 (.setRGB image ((coords i) 0) ((coords i) 1)
|
rlm@187
|
409 (gray (sensor-data i)))))
|
rlm@188
|
410 image))))
|
rlm@37
|
411 #+end_src
|
rlm@37
|
412
|
rlm@226
|
413 * Headers
|
rlm@226
|
414 #+begin_src clojure
|
rlm@226
|
415 (ns cortex.touch
|
rlm@226
|
416 "Simulate the sense of touch in jMonkeyEngine3. Enables any Geometry
|
rlm@226
|
417 to be outfitted with touch sensors with density determined by a UV
|
rlm@226
|
418 image. In this way a Geometry can know what parts of itself are
|
rlm@226
|
419 touching nearby objects. Reads specially prepared blender files to
|
rlm@226
|
420 construct this sense automatically."
|
rlm@226
|
421 {:author "Robert McIntyre"}
|
rlm@226
|
422 (:use (cortex world util sense))
|
rlm@226
|
423 (:use clojure.contrib.def)
|
rlm@226
|
424 (:import (com.jme3.scene Geometry Node Mesh))
|
rlm@226
|
425 (:import com.jme3.collision.CollisionResults)
|
rlm@226
|
426 (:import com.jme3.scene.VertexBuffer$Type)
|
rlm@226
|
427 (:import (com.jme3.math Triangle Vector3f Vector2f Ray Matrix4f)))
|
rlm@226
|
428 #+end_src
|
rlm@37
|
429
|
rlm@228
|
430
|
rlm@228
|
431 * Source Listing
|
rlm@228
|
432 * Next
|
rlm@228
|
433
|
rlm@228
|
434
|
rlm@226
|
435 * COMMENT Code Generation
|
rlm@39
|
436 #+begin_src clojure :tangle ../src/cortex/touch.clj
|
rlm@0
|
437 <<skin-main>>
|
rlm@0
|
438 #+end_src
|
rlm@0
|
439
|
rlm@68
|
440 #+begin_src clojure :tangle ../src/cortex/test/touch.clj
|
rlm@39
|
441 #+end_src
|
rlm@39
|
442
|
rlm@0
|
443
|
rlm@0
|
444
|
rlm@0
|
445
|
rlm@32
|
446
|
rlm@32
|
447
|
rlm@226
|
448
|