rlm@34
|
1 #+title: Simulated Sense of Sight
|
rlm@23
|
2 #+author: Robert McIntyre
|
rlm@23
|
3 #+email: rlm@mit.edu
|
rlm@38
|
4 #+description: Simulated sight for AI research using JMonkeyEngine3 and clojure
|
rlm@34
|
5 #+keywords: computer vision, jMonkeyEngine3, clojure
|
rlm@23
|
6 #+SETUPFILE: ../../aurellem/org/setup.org
|
rlm@23
|
7 #+INCLUDE: ../../aurellem/org/level-0.org
|
rlm@23
|
8 #+babel: :mkdirp yes :noweb yes :exports both
|
rlm@23
|
9
|
rlm@194
|
10 * Vision
|
rlm@216
|
11
|
rlm@212
|
12 Vision is one of the most important senses for humans, so I need to
|
rlm@212
|
13 build a simulated sense of vision for my AI. I will do this with
|
rlm@212
|
14 simulated eyes. Each eye can be independely moved and should see its
|
rlm@212
|
15 own version of the world depending on where it is.
|
rlm@212
|
16
|
rlm@218
|
17 Making these simulated eyes a reality is simple bacause jMonkeyEngine
|
rlm@218
|
18 already conatains extensive support for multiple views of the same 3D
|
rlm@218
|
19 simulated world. The reason jMonkeyEngine has this support is because
|
rlm@218
|
20 the support is necessary to create games with split-screen
|
rlm@218
|
21 views. Multiple views are also used to create efficient
|
rlm@212
|
22 pseudo-reflections by rendering the scene from a certain perspective
|
rlm@212
|
23 and then projecting it back onto a surface in the 3D world.
|
rlm@212
|
24
|
rlm@218
|
25 #+caption: jMonkeyEngine supports multiple views to enable split-screen games, like GoldenEye, which was one of the first games to use split-screen views.
|
rlm@212
|
26 [[../images/goldeneye-4-player.png]]
|
rlm@212
|
27
|
rlm@213
|
28 * Brief Description of jMonkeyEngine's Rendering Pipeline
|
rlm@212
|
29
|
rlm@213
|
30 jMonkeyEngine allows you to create a =ViewPort=, which represents a
|
rlm@213
|
31 view of the simulated world. You can create as many of these as you
|
rlm@213
|
32 want. Every frame, the =RenderManager= iterates through each
|
rlm@213
|
33 =ViewPort=, rendering the scene in the GPU. For each =ViewPort= there
|
rlm@213
|
34 is a =FrameBuffer= which represents the rendered image in the GPU.
|
rlm@151
|
35
|
rlm@213
|
36 Each =ViewPort= can have any number of attached =SceneProcessor=
|
rlm@213
|
37 objects, which are called every time a new frame is rendered. A
|
rlm@219
|
38 =SceneProcessor= recieves its =ViewPort's= =FrameBuffer= and can do
|
rlm@219
|
39 whatever it wants to the data. Often this consists of invoking GPU
|
rlm@219
|
40 specific operations on the rendered image. The =SceneProcessor= can
|
rlm@219
|
41 also copy the GPU image data to RAM and process it with the CPU.
|
rlm@151
|
42
|
rlm@213
|
43 * The Vision Pipeline
|
rlm@151
|
44
|
rlm@213
|
45 Each eye in the simulated creature needs it's own =ViewPort= so that
|
rlm@213
|
46 it can see the world from its own perspective. To this =ViewPort=, I
|
rlm@214
|
47 add a =SceneProcessor= that feeds the visual data to any arbitray
|
rlm@213
|
48 continuation function for further processing. That continuation
|
rlm@213
|
49 function may perform both CPU and GPU operations on the data. To make
|
rlm@213
|
50 this easy for the continuation function, the =SceneProcessor=
|
rlm@213
|
51 maintains appropriatly sized buffers in RAM to hold the data. It does
|
rlm@218
|
52 not do any copying from the GPU to the CPU itself because it is a slow
|
rlm@218
|
53 operation.
|
rlm@214
|
54
|
rlm@213
|
55 #+name: pipeline-1
|
rlm@213
|
56 #+begin_src clojure
|
rlm@113
|
57 (defn vision-pipeline
|
rlm@34
|
58 "Create a SceneProcessor object which wraps a vision processing
|
rlm@113
|
59 continuation function. The continuation is a function that takes
|
rlm@113
|
60 [#^Renderer r #^FrameBuffer fb #^ByteBuffer b #^BufferedImage bi],
|
rlm@113
|
61 each of which has already been appropiately sized."
|
rlm@23
|
62 [continuation]
|
rlm@23
|
63 (let [byte-buffer (atom nil)
|
rlm@113
|
64 renderer (atom nil)
|
rlm@113
|
65 image (atom nil)]
|
rlm@23
|
66 (proxy [SceneProcessor] []
|
rlm@23
|
67 (initialize
|
rlm@23
|
68 [renderManager viewPort]
|
rlm@23
|
69 (let [cam (.getCamera viewPort)
|
rlm@23
|
70 width (.getWidth cam)
|
rlm@23
|
71 height (.getHeight cam)]
|
rlm@23
|
72 (reset! renderer (.getRenderer renderManager))
|
rlm@23
|
73 (reset! byte-buffer
|
rlm@23
|
74 (BufferUtils/createByteBuffer
|
rlm@113
|
75 (* width height 4)))
|
rlm@113
|
76 (reset! image (BufferedImage.
|
rlm@113
|
77 width height
|
rlm@113
|
78 BufferedImage/TYPE_4BYTE_ABGR))))
|
rlm@23
|
79 (isInitialized [] (not (nil? @byte-buffer)))
|
rlm@23
|
80 (reshape [_ _ _])
|
rlm@23
|
81 (preFrame [_])
|
rlm@23
|
82 (postQueue [_])
|
rlm@23
|
83 (postFrame
|
rlm@23
|
84 [#^FrameBuffer fb]
|
rlm@23
|
85 (.clear @byte-buffer)
|
rlm@113
|
86 (continuation @renderer fb @byte-buffer @image))
|
rlm@23
|
87 (cleanup []))))
|
rlm@213
|
88 #+end_src
|
rlm@213
|
89
|
rlm@213
|
90 The continuation function given to =(vision-pipeline)= above will be
|
rlm@213
|
91 given a =Renderer= and three containers for image data. The
|
rlm@218
|
92 =FrameBuffer= references the GPU image data, but the pixel data can
|
rlm@218
|
93 not be used directly on the CPU. The =ByteBuffer= and =BufferedImage=
|
rlm@219
|
94 are initially "empty" but are sized to hold the data in the
|
rlm@213
|
95 =FrameBuffer=. I call transfering the GPU image data to the CPU
|
rlm@213
|
96 structures "mixing" the image data. I have provided three functions to
|
rlm@213
|
97 do this mixing.
|
rlm@213
|
98
|
rlm@213
|
99 #+name: pipeline-2
|
rlm@213
|
100 #+begin_src clojure
|
rlm@113
|
101 (defn frameBuffer->byteBuffer!
|
rlm@113
|
102 "Transfer the data in the graphics card (Renderer, FrameBuffer) to
|
rlm@113
|
103 the CPU (ByteBuffer)."
|
rlm@113
|
104 [#^Renderer r #^FrameBuffer fb #^ByteBuffer bb]
|
rlm@113
|
105 (.readFrameBuffer r fb bb) bb)
|
rlm@113
|
106
|
rlm@113
|
107 (defn byteBuffer->bufferedImage!
|
rlm@113
|
108 "Convert the C-style BGRA image data in the ByteBuffer bb to the AWT
|
rlm@113
|
109 style ABGR image data and place it in BufferedImage bi."
|
rlm@113
|
110 [#^ByteBuffer bb #^BufferedImage bi]
|
rlm@113
|
111 (Screenshots/convertScreenShot bb bi) bi)
|
rlm@113
|
112
|
rlm@113
|
113 (defn BufferedImage!
|
rlm@113
|
114 "Continuation which will grab the buffered image from the materials
|
rlm@113
|
115 provided by (vision-pipeline)."
|
rlm@113
|
116 [#^Renderer r #^FrameBuffer fb #^ByteBuffer bb #^BufferedImage bi]
|
rlm@113
|
117 (byteBuffer->bufferedImage!
|
rlm@113
|
118 (frameBuffer->byteBuffer! r fb bb) bi))
|
rlm@213
|
119 #+end_src
|
rlm@112
|
120
|
rlm@213
|
121 Note that it is possible to write vision processing algorithms
|
rlm@213
|
122 entirely in terms of =BufferedImage= inputs. Just compose that
|
rlm@213
|
123 =BufferedImage= algorithm with =(BufferedImage!)=. However, a vision
|
rlm@213
|
124 processing algorithm that is entirely hosted on the GPU does not have
|
rlm@213
|
125 to pay for this convienence.
|
rlm@213
|
126
|
rlm@214
|
127 * COMMENT asdasd
|
rlm@213
|
128
|
rlm@213
|
129 (vision creature) will take an optional :skip argument which will
|
rlm@213
|
130 inform the continuations in scene processor to skip the given
|
rlm@213
|
131 number of cycles 0 means that no cycles will be skipped.
|
rlm@213
|
132
|
rlm@213
|
133 (vision creature) will return [init-functions sensor-functions].
|
rlm@213
|
134 The init-functions are each single-arg functions that take the
|
rlm@213
|
135 world and register the cameras and must each be called before the
|
rlm@213
|
136 corresponding sensor-functions. Each init-function returns the
|
rlm@213
|
137 viewport for that eye which can be manipulated, saved, etc. Each
|
rlm@213
|
138 sensor-function is a thunk and will return data in the same
|
rlm@213
|
139 format as the tactile-sensor functions the structure is
|
rlm@213
|
140 [topology, sensor-data]. Internally, these sensor-functions
|
rlm@213
|
141 maintain a reference to sensor-data which is periodically updated
|
rlm@213
|
142 by the continuation function established by its init-function.
|
rlm@213
|
143 They can be queried every cycle, but their information may not
|
rlm@213
|
144 necessairly be different every cycle.
|
rlm@213
|
145
|
rlm@214
|
146 * Physical Eyes
|
rlm@214
|
147
|
rlm@214
|
148 The vision pipeline described above handles the flow of rendered
|
rlm@214
|
149 images. Now, we need simulated eyes to serve as the source of these
|
rlm@214
|
150 images.
|
rlm@214
|
151
|
rlm@214
|
152 An eye is described in blender in the same way as a joint. They are
|
rlm@214
|
153 zero dimensional empty objects with no geometry whose local coordinate
|
rlm@214
|
154 system determines the orientation of the resulting eye. All eyes are
|
rlm@214
|
155 childern of a parent node named "eyes" just as all joints have a
|
rlm@214
|
156 parent named "joints". An eye binds to the nearest physical object
|
rlm@214
|
157 with =(bind-sense=).
|
rlm@214
|
158
|
rlm@214
|
159 #+name: add-eye
|
rlm@214
|
160 #+begin_src clojure
|
rlm@215
|
161 (in-ns 'cortex.vision)
|
rlm@215
|
162
|
rlm@214
|
163 (defn add-eye!
|
rlm@214
|
164 "Create a Camera centered on the current position of 'eye which
|
rlm@214
|
165 follows the closest physical node in 'creature and sends visual
|
rlm@215
|
166 data to 'continuation. The camera will point in the X direction and
|
rlm@215
|
167 use the Z vector as up as determined by the rotation of these
|
rlm@215
|
168 vectors in blender coordinate space. Use XZY rotation for the node
|
rlm@215
|
169 in blender."
|
rlm@214
|
170 [#^Node creature #^Spatial eye]
|
rlm@214
|
171 (let [target (closest-node creature eye)
|
rlm@214
|
172 [cam-width cam-height] (eye-dimensions eye)
|
rlm@215
|
173 cam (Camera. cam-width cam-height)
|
rlm@215
|
174 rot (.getWorldRotation eye)]
|
rlm@214
|
175 (.setLocation cam (.getWorldTranslation eye))
|
rlm@218
|
176 (.lookAtDirection
|
rlm@218
|
177 cam ; this part is not a mistake and
|
rlm@218
|
178 (.mult rot Vector3f/UNIT_X) ; is consistent with using Z in
|
rlm@218
|
179 (.mult rot Vector3f/UNIT_Y)) ; blender as the UP vector.
|
rlm@214
|
180 (.setFrustumPerspective
|
rlm@215
|
181 cam 45 (/ (.getWidth cam) (.getHeight cam)) 1 1000)
|
rlm@215
|
182 (bind-sense target cam) cam))
|
rlm@214
|
183 #+end_src
|
rlm@214
|
184
|
rlm@214
|
185 Here, the camera is created based on metadata on the eye-node and
|
rlm@214
|
186 attached to the nearest physical object with =(bind-sense)=
|
rlm@214
|
187
|
rlm@214
|
188
|
rlm@214
|
189 ** The Retina
|
rlm@214
|
190
|
rlm@214
|
191 An eye is a surface (the retina) which contains many discrete sensors
|
rlm@218
|
192 to detect light. These sensors have can have different light-sensing
|
rlm@214
|
193 properties. In humans, each discrete sensor is sensitive to red,
|
rlm@214
|
194 blue, green, or gray. These different types of sensors can have
|
rlm@214
|
195 different spatial distributions along the retina. In humans, there is
|
rlm@214
|
196 a fovea in the center of the retina which has a very high density of
|
rlm@214
|
197 color sensors, and a blind spot which has no sensors at all. Sensor
|
rlm@219
|
198 density decreases in proportion to distance from the fovea.
|
rlm@214
|
199
|
rlm@214
|
200 I want to be able to model any retinal configuration, so my eye-nodes
|
rlm@214
|
201 in blender contain metadata pointing to images that describe the
|
rlm@214
|
202 percise position of the individual sensors using white pixels. The
|
rlm@214
|
203 meta-data also describes the percise sensitivity to light that the
|
rlm@214
|
204 sensors described in the image have. An eye can contain any number of
|
rlm@214
|
205 these images. For example, the metadata for an eye might look like
|
rlm@214
|
206 this:
|
rlm@214
|
207
|
rlm@214
|
208 #+begin_src clojure
|
rlm@214
|
209 {0xFF0000 "Models/test-creature/retina-small.png"}
|
rlm@214
|
210 #+end_src
|
rlm@214
|
211
|
rlm@214
|
212 #+caption: The retinal profile image "Models/test-creature/retina-small.png". White pixels are photo-sensitive elements. The distribution of white pixels is denser in the middle and falls off at the edges and is inspired by the human retina.
|
rlm@214
|
213 [[../assets/Models/test-creature/retina-small.png]]
|
rlm@214
|
214
|
rlm@214
|
215 Together, the number 0xFF0000 and the image image above describe the
|
rlm@214
|
216 placement of red-sensitive sensory elements.
|
rlm@214
|
217
|
rlm@214
|
218 Meta-data to very crudely approximate a human eye might be something
|
rlm@214
|
219 like this:
|
rlm@214
|
220
|
rlm@214
|
221 #+begin_src clojure
|
rlm@214
|
222 (let [retinal-profile "Models/test-creature/retina-small.png"]
|
rlm@214
|
223 {0xFF0000 retinal-profile
|
rlm@214
|
224 0x00FF00 retinal-profile
|
rlm@214
|
225 0x0000FF retinal-profile
|
rlm@214
|
226 0xFFFFFF retinal-profile})
|
rlm@214
|
227 #+end_src
|
rlm@214
|
228
|
rlm@214
|
229 The numbers that serve as keys in the map determine a sensor's
|
rlm@214
|
230 relative sensitivity to the channels red, green, and blue. These
|
rlm@218
|
231 sensitivity values are packed into an integer in the order =|_|R|G|B|=
|
rlm@218
|
232 in 8-bit fields. The RGB values of a pixel in the image are added
|
rlm@214
|
233 together with these sensitivities as linear weights. Therfore,
|
rlm@214
|
234 0xFF0000 means sensitive to red only while 0xFFFFFF means sensitive to
|
rlm@214
|
235 all colors equally (gray).
|
rlm@214
|
236
|
rlm@214
|
237 For convienence I've defined a few symbols for the more common
|
rlm@214
|
238 sensitivity values.
|
rlm@214
|
239
|
rlm@214
|
240 #+name: sensitivity
|
rlm@214
|
241 #+begin_src clojure
|
rlm@214
|
242 (defvar sensitivity-presets
|
rlm@214
|
243 {:all 0xFFFFFF
|
rlm@214
|
244 :red 0xFF0000
|
rlm@214
|
245 :blue 0x0000FF
|
rlm@214
|
246 :green 0x00FF00}
|
rlm@214
|
247 "Retinal sensitivity presets for sensors that extract one channel
|
rlm@219
|
248 (:red :blue :green) or average all channels (:all)")
|
rlm@214
|
249 #+end_src
|
rlm@214
|
250
|
rlm@214
|
251 ** Metadata Processing
|
rlm@214
|
252
|
rlm@214
|
253 =(retina-sensor-profile)= extracts a map from the eye-node in the same
|
rlm@214
|
254 format as the example maps above. =(eye-dimensions)= finds the
|
rlm@219
|
255 dimensions of the smallest image required to contain all the retinal
|
rlm@214
|
256 sensor maps.
|
rlm@214
|
257
|
rlm@216
|
258 #+name: retina
|
rlm@214
|
259 #+begin_src clojure
|
rlm@214
|
260 (defn retina-sensor-profile
|
rlm@214
|
261 "Return a map of pixel sensitivity numbers to BufferedImages
|
rlm@214
|
262 describing the distribution of light-sensitive components of this
|
rlm@214
|
263 eye. :red, :green, :blue, :gray are already defined as extracting
|
rlm@214
|
264 the red, green, blue, and average components respectively."
|
rlm@214
|
265 [#^Spatial eye]
|
rlm@214
|
266 (if-let [eye-map (meta-data eye "eye")]
|
rlm@214
|
267 (map-vals
|
rlm@214
|
268 load-image
|
rlm@214
|
269 (eval (read-string eye-map)))))
|
rlm@214
|
270
|
rlm@218
|
271 (defn eye-dimensions
|
rlm@218
|
272 "Returns [width, height] determined by the metadata of the eye."
|
rlm@214
|
273 [#^Spatial eye]
|
rlm@214
|
274 (let [dimensions
|
rlm@214
|
275 (map #(vector (.getWidth %) (.getHeight %))
|
rlm@214
|
276 (vals (retina-sensor-profile eye)))]
|
rlm@214
|
277 [(apply max (map first dimensions))
|
rlm@214
|
278 (apply max (map second dimensions))]))
|
rlm@214
|
279 #+end_src
|
rlm@214
|
280
|
rlm@214
|
281 * Eye Creation
|
rlm@214
|
282 First off, get the children of the "eyes" empty node to find all the
|
rlm@214
|
283 eyes the creature has.
|
rlm@216
|
284 #+name: eye-node
|
rlm@214
|
285 #+begin_src clojure
|
rlm@214
|
286 (defvar
|
rlm@214
|
287 ^{:arglists '([creature])}
|
rlm@214
|
288 eyes
|
rlm@214
|
289 (sense-nodes "eyes")
|
rlm@214
|
290 "Return the children of the creature's \"eyes\" node.")
|
rlm@214
|
291 #+end_src
|
rlm@214
|
292
|
rlm@215
|
293 Then, add the camera created by =(add-eye!)= to the simulation by
|
rlm@215
|
294 creating a new viewport.
|
rlm@214
|
295
|
rlm@216
|
296 #+name: add-camera
|
rlm@213
|
297 #+begin_src clojure
|
rlm@169
|
298 (defn add-camera!
|
rlm@169
|
299 "Add a camera to the world, calling continuation on every frame
|
rlm@34
|
300 produced."
|
rlm@167
|
301 [#^Application world camera continuation]
|
rlm@23
|
302 (let [width (.getWidth camera)
|
rlm@23
|
303 height (.getHeight camera)
|
rlm@23
|
304 render-manager (.getRenderManager world)
|
rlm@23
|
305 viewport (.createMainView render-manager "eye-view" camera)]
|
rlm@23
|
306 (doto viewport
|
rlm@23
|
307 (.setClearFlags true true true)
|
rlm@112
|
308 (.setBackgroundColor ColorRGBA/Black)
|
rlm@113
|
309 (.addProcessor (vision-pipeline continuation))
|
rlm@23
|
310 (.attachScene (.getRootNode world)))))
|
rlm@215
|
311 #+end_src
|
rlm@151
|
312
|
rlm@151
|
313
|
rlm@218
|
314 The eye's continuation function should register the viewport with the
|
rlm@218
|
315 simulation the first time it is called, use the CPU to extract the
|
rlm@215
|
316 appropriate pixels from the rendered image and weight them by each
|
rlm@218
|
317 sensor's sensitivity. I have the option to do this processing in
|
rlm@218
|
318 native code for a slight gain in speed. I could also do it in the GPU
|
rlm@218
|
319 for a massive gain in speed. =(vision-kernel)= generates a list of
|
rlm@218
|
320 such continuation functions, one for each channel of the eye.
|
rlm@151
|
321
|
rlm@216
|
322 #+name: kernel
|
rlm@215
|
323 #+begin_src clojure
|
rlm@215
|
324 (in-ns 'cortex.vision)
|
rlm@151
|
325
|
rlm@215
|
326 (defrecord attached-viewport [vision-fn viewport-fn]
|
rlm@215
|
327 clojure.lang.IFn
|
rlm@215
|
328 (invoke [this world] (vision-fn world))
|
rlm@215
|
329 (applyTo [this args] (apply vision-fn args)))
|
rlm@151
|
330
|
rlm@216
|
331 (defn pixel-sense [sensitivity pixel]
|
rlm@216
|
332 (let [s-r (bit-shift-right (bit-and 0xFF0000 sensitivity) 16)
|
rlm@216
|
333 s-g (bit-shift-right (bit-and 0x00FF00 sensitivity) 8)
|
rlm@216
|
334 s-b (bit-and 0x0000FF sensitivity)
|
rlm@216
|
335
|
rlm@216
|
336 p-r (bit-shift-right (bit-and 0xFF0000 pixel) 16)
|
rlm@216
|
337 p-g (bit-shift-right (bit-and 0x00FF00 pixel) 8)
|
rlm@216
|
338 p-b (bit-and 0x0000FF pixel)
|
rlm@216
|
339
|
rlm@216
|
340 total-sensitivity (* 255 (+ s-r s-g s-b))]
|
rlm@216
|
341 (float (/ (+ (* s-r p-r)
|
rlm@216
|
342 (* s-g p-g)
|
rlm@216
|
343 (* s-b p-b))
|
rlm@216
|
344 total-sensitivity))))
|
rlm@216
|
345
|
rlm@215
|
346 (defn vision-kernel
|
rlm@171
|
347 "Returns a list of functions, each of which will return a color
|
rlm@171
|
348 channel's worth of visual information when called inside a running
|
rlm@171
|
349 simulation."
|
rlm@151
|
350 [#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
|
rlm@169
|
351 (let [retinal-map (retina-sensor-profile eye)
|
rlm@169
|
352 camera (add-eye! creature eye)
|
rlm@151
|
353 vision-image
|
rlm@151
|
354 (atom
|
rlm@151
|
355 (BufferedImage. (.getWidth camera)
|
rlm@151
|
356 (.getHeight camera)
|
rlm@170
|
357 BufferedImage/TYPE_BYTE_BINARY))
|
rlm@170
|
358 register-eye!
|
rlm@170
|
359 (runonce
|
rlm@170
|
360 (fn [world]
|
rlm@170
|
361 (add-camera!
|
rlm@170
|
362 world camera
|
rlm@170
|
363 (let [counter (atom 0)]
|
rlm@170
|
364 (fn [r fb bb bi]
|
rlm@170
|
365 (if (zero? (rem (swap! counter inc) (inc skip)))
|
rlm@170
|
366 (reset! vision-image
|
rlm@170
|
367 (BufferedImage! r fb bb bi))))))))]
|
rlm@151
|
368 (vec
|
rlm@151
|
369 (map
|
rlm@151
|
370 (fn [[key image]]
|
rlm@151
|
371 (let [whites (white-coordinates image)
|
rlm@151
|
372 topology (vec (collapse whites))
|
rlm@216
|
373 sensitivity (sensitivity-presets key key)]
|
rlm@215
|
374 (attached-viewport.
|
rlm@215
|
375 (fn [world]
|
rlm@215
|
376 (register-eye! world)
|
rlm@215
|
377 (vector
|
rlm@215
|
378 topology
|
rlm@215
|
379 (vec
|
rlm@215
|
380 (for [[x y] whites]
|
rlm@216
|
381 (pixel-sense
|
rlm@216
|
382 sensitivity
|
rlm@216
|
383 (.getRGB @vision-image x y))))))
|
rlm@215
|
384 register-eye!)))
|
rlm@215
|
385 retinal-map))))
|
rlm@151
|
386
|
rlm@215
|
387 (defn gen-fix-display
|
rlm@215
|
388 "Create a function to call to restore a simulation's display when it
|
rlm@215
|
389 is disrupted by a Viewport."
|
rlm@215
|
390 []
|
rlm@215
|
391 (runonce
|
rlm@215
|
392 (fn [world]
|
rlm@215
|
393 (add-camera! world (.getCamera world) no-op))))
|
rlm@215
|
394 #+end_src
|
rlm@170
|
395
|
rlm@215
|
396 Note that since each of the functions generated by =(vision-kernel)=
|
rlm@215
|
397 shares the same =(register-eye!)= function, the eye will be registered
|
rlm@215
|
398 only once the first time any of the functions from the list returned
|
rlm@215
|
399 by =(vision-kernel)= is called. Each of the functions returned by
|
rlm@215
|
400 =(vision-kernel)= also allows access to the =Viewport= through which
|
rlm@215
|
401 it recieves images.
|
rlm@215
|
402
|
rlm@215
|
403 The in-game display can be disrupted by all the viewports that the
|
rlm@215
|
404 functions greated by =(vision-kernel)= add. This doesn't affect the
|
rlm@215
|
405 simulation or the simulated senses, but can be annoying.
|
rlm@215
|
406 =(gen-fix-display)= restores the in-simulation display.
|
rlm@215
|
407
|
rlm@215
|
408 ** Vision!
|
rlm@215
|
409
|
rlm@218
|
410 All the hard work has been done; all that remains is to apply
|
rlm@215
|
411 =(vision-kernel)= to each eye in the creature and gather the results
|
rlm@215
|
412 into one list of functions.
|
rlm@215
|
413
|
rlm@216
|
414 #+name: main
|
rlm@215
|
415 #+begin_src clojure
|
rlm@170
|
416 (defn vision!
|
rlm@170
|
417 "Returns a function which returns visual sensory data when called
|
rlm@218
|
418 inside a running simulation."
|
rlm@151
|
419 [#^Node creature & {skip :skip :or {skip 0}}]
|
rlm@151
|
420 (reduce
|
rlm@170
|
421 concat
|
rlm@167
|
422 (for [eye (eyes creature)]
|
rlm@215
|
423 (vision-kernel creature eye))))
|
rlm@215
|
424 #+end_src
|
rlm@151
|
425
|
rlm@215
|
426 ** Visualization of Vision
|
rlm@215
|
427
|
rlm@215
|
428 It's vital to have a visual representation for each sense. Here I use
|
rlm@215
|
429 =(view-sense)= to construct a function that will create a display for
|
rlm@215
|
430 visual data.
|
rlm@215
|
431
|
rlm@216
|
432 #+name: display
|
rlm@215
|
433 #+begin_src clojure
|
rlm@216
|
434 (in-ns 'cortex.vision)
|
rlm@216
|
435
|
rlm@189
|
436 (defn view-vision
|
rlm@189
|
437 "Creates a function which accepts a list of visual sensor-data and
|
rlm@189
|
438 displays each element of the list to the screen."
|
rlm@189
|
439 []
|
rlm@188
|
440 (view-sense
|
rlm@188
|
441 (fn
|
rlm@188
|
442 [[coords sensor-data]]
|
rlm@188
|
443 (let [image (points->image coords)]
|
rlm@188
|
444 (dorun
|
rlm@188
|
445 (for [i (range (count coords))]
|
rlm@188
|
446 (.setRGB image ((coords i) 0) ((coords i) 1)
|
rlm@216
|
447 (gray (int (* 255 (sensor-data i)))))))
|
rlm@189
|
448 image))))
|
rlm@34
|
449 #+end_src
|
rlm@23
|
450
|
rlm@215
|
451 * Tests
|
rlm@215
|
452 ** Basic Test
|
rlm@23
|
453
|
rlm@215
|
454 This is a basic test for the vision system. It only tests the
|
rlm@215
|
455 vision-pipeline and does not deal with loadig eyes from a blender
|
rlm@215
|
456 file. The code creates two videos of the same rotating cube from
|
rlm@215
|
457 different angles.
|
rlm@23
|
458
|
rlm@215
|
459 #+name: test-1
|
rlm@23
|
460 #+begin_src clojure
|
rlm@215
|
461 (in-ns 'cortex.test.vision)
|
rlm@23
|
462
|
rlm@219
|
463 (defn test-pipeline
|
rlm@69
|
464 "Testing vision:
|
rlm@69
|
465 Tests the vision system by creating two views of the same rotating
|
rlm@69
|
466 object from different angles and displaying both of those views in
|
rlm@69
|
467 JFrames.
|
rlm@69
|
468
|
rlm@69
|
469 You should see a rotating cube, and two windows,
|
rlm@69
|
470 each displaying a different view of the cube."
|
rlm@36
|
471 []
|
rlm@58
|
472 (let [candy
|
rlm@58
|
473 (box 1 1 1 :physical? false :color ColorRGBA/Blue)]
|
rlm@112
|
474 (world
|
rlm@112
|
475 (doto (Node.)
|
rlm@112
|
476 (.attachChild candy))
|
rlm@112
|
477 {}
|
rlm@112
|
478 (fn [world]
|
rlm@112
|
479 (let [cam (.clone (.getCamera world))
|
rlm@112
|
480 width (.getWidth cam)
|
rlm@112
|
481 height (.getHeight cam)]
|
rlm@169
|
482 (add-camera! world cam
|
rlm@215
|
483 (comp
|
rlm@215
|
484 (view-image
|
rlm@215
|
485 (File. "/home/r/proj/cortex/render/vision/1"))
|
rlm@215
|
486 BufferedImage!))
|
rlm@169
|
487 (add-camera! world
|
rlm@112
|
488 (doto (.clone cam)
|
rlm@112
|
489 (.setLocation (Vector3f. -10 0 0))
|
rlm@112
|
490 (.lookAt Vector3f/ZERO Vector3f/UNIT_Y))
|
rlm@215
|
491 (comp
|
rlm@215
|
492 (view-image
|
rlm@215
|
493 (File. "/home/r/proj/cortex/render/vision/2"))
|
rlm@215
|
494 BufferedImage!))
|
rlm@112
|
495 ;; This is here to restore the main view
|
rlm@112
|
496 ;; after the other views have completed processing
|
rlm@169
|
497 (add-camera! world (.getCamera world) no-op)))
|
rlm@112
|
498 (fn [world tpf]
|
rlm@112
|
499 (.rotate candy (* tpf 0.2) 0 0)))))
|
rlm@23
|
500 #+end_src
|
rlm@23
|
501
|
rlm@215
|
502 #+begin_html
|
rlm@215
|
503 <div class="figure">
|
rlm@215
|
504 <video controls="controls" width="755">
|
rlm@215
|
505 <source src="../video/spinning-cube.ogg" type="video/ogg"
|
rlm@215
|
506 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@215
|
507 </video>
|
rlm@215
|
508 <p>A rotating cube viewed from two different perspectives.</p>
|
rlm@215
|
509 </div>
|
rlm@215
|
510 #+end_html
|
rlm@215
|
511
|
rlm@215
|
512 Creating multiple eyes like this can be used for stereoscopic vision
|
rlm@215
|
513 simulation in a single creature or for simulating multiple creatures,
|
rlm@215
|
514 each with their own sense of vision.
|
rlm@215
|
515
|
rlm@215
|
516 ** Adding Vision to the Worm
|
rlm@215
|
517
|
rlm@218
|
518 To the worm from the last post, I add a new node that describes its
|
rlm@215
|
519 eyes.
|
rlm@215
|
520
|
rlm@215
|
521 #+attr_html: width=755
|
rlm@215
|
522 #+caption: The worm with newly added empty nodes describing a single eye.
|
rlm@215
|
523 [[../images/worm-with-eye.png]]
|
rlm@215
|
524
|
rlm@215
|
525 The node highlighted in yellow is the root level "eyes" node. It has
|
rlm@218
|
526 a single child, highlighted in orange, which describes a single
|
rlm@218
|
527 eye. This is the "eye" node. It is placed so that the worm will have
|
rlm@218
|
528 an eye located in the center of the flat portion of its lower
|
rlm@218
|
529 hemispherical section.
|
rlm@218
|
530
|
rlm@218
|
531 The two nodes which are not highlighted describe the single joint of
|
rlm@218
|
532 the worm.
|
rlm@215
|
533
|
rlm@215
|
534 The metadata of the eye-node is:
|
rlm@215
|
535
|
rlm@215
|
536 #+begin_src clojure :results verbatim :exports both
|
rlm@215
|
537 (cortex.sense/meta-data
|
rlm@218
|
538 (.getChild (.getChild (cortex.test.body/worm) "eyes") "eye") "eye")
|
rlm@215
|
539 #+end_src
|
rlm@215
|
540
|
rlm@215
|
541 #+results:
|
rlm@215
|
542 : "(let [retina \"Models/test-creature/retina-small.png\"]
|
rlm@215
|
543 : {:all retina :red retina :green retina :blue retina})"
|
rlm@215
|
544
|
rlm@215
|
545 This is the approximation to the human eye described earlier.
|
rlm@215
|
546
|
rlm@216
|
547 #+name: test-2
|
rlm@215
|
548 #+begin_src clojure
|
rlm@215
|
549 (in-ns 'cortex.test.vision)
|
rlm@215
|
550
|
rlm@216
|
551 (defn change-color [obj color]
|
rlm@216
|
552 (println-repl obj)
|
rlm@216
|
553 (if obj
|
rlm@216
|
554 (.setColor (.getMaterial obj) "Color" color)))
|
rlm@216
|
555
|
rlm@216
|
556 (defn colored-cannon-ball [color]
|
rlm@216
|
557 (comp #(change-color % color)
|
rlm@216
|
558 (fire-cannon-ball)))
|
rlm@215
|
559
|
rlm@236
|
560 (defn test-worm-vision [record]
|
rlm@215
|
561 (let [the-worm (doto (worm)(body!))
|
rlm@215
|
562 vision (vision! the-worm)
|
rlm@215
|
563 vision-display (view-vision)
|
rlm@215
|
564 fix-display (gen-fix-display)
|
rlm@215
|
565 me (sphere 0.5 :color ColorRGBA/Blue :physical? false)
|
rlm@215
|
566 x-axis
|
rlm@215
|
567 (box 1 0.01 0.01 :physical? false :color ColorRGBA/Red
|
rlm@215
|
568 :position (Vector3f. 0 -5 0))
|
rlm@215
|
569 y-axis
|
rlm@215
|
570 (box 0.01 1 0.01 :physical? false :color ColorRGBA/Green
|
rlm@215
|
571 :position (Vector3f. 0 -5 0))
|
rlm@215
|
572 z-axis
|
rlm@215
|
573 (box 0.01 0.01 1 :physical? false :color ColorRGBA/Blue
|
rlm@216
|
574 :position (Vector3f. 0 -5 0))
|
rlm@216
|
575 timer (RatchetTimer. 60)]
|
rlm@215
|
576
|
rlm@215
|
577 (world (nodify [(floor) the-worm x-axis y-axis z-axis me])
|
rlm@216
|
578 (assoc standard-debug-controls
|
rlm@216
|
579 "key-r" (colored-cannon-ball ColorRGBA/Red)
|
rlm@216
|
580 "key-b" (colored-cannon-ball ColorRGBA/Blue)
|
rlm@216
|
581 "key-g" (colored-cannon-ball ColorRGBA/Green))
|
rlm@215
|
582 (fn [world]
|
rlm@215
|
583 (light-up-everything world)
|
rlm@216
|
584 (speed-up world)
|
rlm@216
|
585 (.setTimer world timer)
|
rlm@216
|
586 (display-dialated-time world timer)
|
rlm@215
|
587 ;; add a view from the worm's perspective
|
rlm@236
|
588 (if record
|
rlm@236
|
589 (Capture/captureVideo
|
rlm@236
|
590 world
|
rlm@236
|
591 (File.
|
rlm@236
|
592 "/home/r/proj/cortex/render/worm-vision/main-view")))
|
rlm@236
|
593
|
rlm@215
|
594 (add-camera!
|
rlm@215
|
595 world
|
rlm@215
|
596 (add-eye! the-worm
|
rlm@215
|
597 (.getChild
|
rlm@215
|
598 (.getChild the-worm "eyes") "eye"))
|
rlm@215
|
599 (comp
|
rlm@215
|
600 (view-image
|
rlm@236
|
601 (if record
|
rlm@236
|
602 (File.
|
rlm@236
|
603 "/home/r/proj/cortex/render/worm-vision/worm-view")))
|
rlm@215
|
604 BufferedImage!))
|
rlm@236
|
605
|
rlm@236
|
606 (set-gravity world Vector3f/ZERO))
|
rlm@216
|
607
|
rlm@215
|
608 (fn [world _ ]
|
rlm@215
|
609 (.setLocalTranslation me (.getLocation (.getCamera world)))
|
rlm@215
|
610 (vision-display
|
rlm@215
|
611 (map #(% world) vision)
|
rlm@236
|
612 (if record (File. "/home/r/proj/cortex/render/worm-vision")))
|
rlm@215
|
613 (fix-display world)))))
|
rlm@215
|
614 #+end_src
|
rlm@215
|
615
|
rlm@218
|
616 The world consists of the worm and a flat gray floor. I can shoot red,
|
rlm@218
|
617 green, blue and white cannonballs at the worm. The worm is initially
|
rlm@218
|
618 looking down at the floor, and there is no gravity. My perspective
|
rlm@218
|
619 (the Main View), the worm's perspective (Worm View) and the 4 sensor
|
rlm@218
|
620 channels that comprise the worm's eye are all saved frame-by-frame to
|
rlm@218
|
621 disk.
|
rlm@218
|
622
|
rlm@218
|
623 * Demonstration of Vision
|
rlm@218
|
624 #+begin_html
|
rlm@218
|
625 <div class="figure">
|
rlm@218
|
626 <video controls="controls" width="755">
|
rlm@218
|
627 <source src="../video/worm-vision.ogg" type="video/ogg"
|
rlm@218
|
628 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@218
|
629 </video>
|
rlm@218
|
630 <p>Simulated Vision in a Virtual Environment</p>
|
rlm@218
|
631 </div>
|
rlm@218
|
632 #+end_html
|
rlm@218
|
633
|
rlm@218
|
634 ** Generate the Worm Video from Frames
|
rlm@216
|
635 #+name: magick2
|
rlm@216
|
636 #+begin_src clojure
|
rlm@216
|
637 (ns cortex.video.magick2
|
rlm@216
|
638 (:import java.io.File)
|
rlm@216
|
639 (:use clojure.contrib.shell-out))
|
rlm@216
|
640
|
rlm@216
|
641 (defn images [path]
|
rlm@216
|
642 (sort (rest (file-seq (File. path)))))
|
rlm@216
|
643
|
rlm@216
|
644 (def base "/home/r/proj/cortex/render/worm-vision/")
|
rlm@216
|
645
|
rlm@216
|
646 (defn pics [file]
|
rlm@216
|
647 (images (str base file)))
|
rlm@216
|
648
|
rlm@216
|
649 (defn combine-images []
|
rlm@216
|
650 (let [main-view (pics "main-view")
|
rlm@216
|
651 worm-view (pics "worm-view")
|
rlm@216
|
652 blue (pics "0")
|
rlm@216
|
653 green (pics "1")
|
rlm@216
|
654 red (pics "2")
|
rlm@216
|
655 gray (pics "3")
|
rlm@216
|
656 blender (let [b-pics (pics "blender")]
|
rlm@216
|
657 (concat b-pics (repeat 9001 (last b-pics))))
|
rlm@216
|
658 background (repeat 9001 (File. (str base "background.png")))
|
rlm@216
|
659 targets (map
|
rlm@216
|
660 #(File. (str base "out/" (format "%07d.png" %)))
|
rlm@216
|
661 (range 0 (count main-view)))]
|
rlm@216
|
662 (dorun
|
rlm@216
|
663 (pmap
|
rlm@216
|
664 (comp
|
rlm@216
|
665 (fn [[background main-view worm-view red green blue gray blender target]]
|
rlm@216
|
666 (println target)
|
rlm@216
|
667 (sh "convert"
|
rlm@216
|
668 background
|
rlm@216
|
669 main-view "-geometry" "+18+17" "-composite"
|
rlm@216
|
670 worm-view "-geometry" "+677+17" "-composite"
|
rlm@216
|
671 green "-geometry" "+685+430" "-composite"
|
rlm@216
|
672 red "-geometry" "+788+430" "-composite"
|
rlm@216
|
673 blue "-geometry" "+894+430" "-composite"
|
rlm@216
|
674 gray "-geometry" "+1000+430" "-composite"
|
rlm@216
|
675 blender "-geometry" "+0+0" "-composite"
|
rlm@216
|
676 target))
|
rlm@216
|
677 (fn [& args] (map #(.getCanonicalPath %) args)))
|
rlm@216
|
678 background main-view worm-view red green blue gray blender targets))))
|
rlm@216
|
679 #+end_src
|
rlm@216
|
680
|
rlm@216
|
681 #+begin_src sh :results silent
|
rlm@216
|
682 cd /home/r/proj/cortex/render/worm-vision
|
rlm@216
|
683 ffmpeg -r 25 -b 9001k -i out/%07d.png -vcodec libtheora worm-vision.ogg
|
rlm@216
|
684 #+end_src
|
rlm@236
|
685
|
rlm@215
|
686 * Headers
|
rlm@215
|
687
|
rlm@213
|
688 #+name: vision-header
|
rlm@213
|
689 #+begin_src clojure
|
rlm@213
|
690 (ns cortex.vision
|
rlm@213
|
691 "Simulate the sense of vision in jMonkeyEngine3. Enables multiple
|
rlm@213
|
692 eyes from different positions to observe the same world, and pass
|
rlm@213
|
693 the observed data to any arbitray function. Automatically reads
|
rlm@216
|
694 eye-nodes from specially prepared blender files and instantiates
|
rlm@213
|
695 them in the world as actual eyes."
|
rlm@213
|
696 {:author "Robert McIntyre"}
|
rlm@213
|
697 (:use (cortex world sense util))
|
rlm@213
|
698 (:use clojure.contrib.def)
|
rlm@213
|
699 (:import com.jme3.post.SceneProcessor)
|
rlm@237
|
700 (:import (com.jme3.util BufferUtils Screenshots))
|
rlm@213
|
701 (:import java.nio.ByteBuffer)
|
rlm@213
|
702 (:import java.awt.image.BufferedImage)
|
rlm@213
|
703 (:import (com.jme3.renderer ViewPort Camera))
|
rlm@216
|
704 (:import (com.jme3.math ColorRGBA Vector3f Matrix3f))
|
rlm@213
|
705 (:import com.jme3.renderer.Renderer)
|
rlm@213
|
706 (:import com.jme3.app.Application)
|
rlm@213
|
707 (:import com.jme3.texture.FrameBuffer)
|
rlm@213
|
708 (:import (com.jme3.scene Node Spatial)))
|
rlm@213
|
709 #+end_src
|
rlm@112
|
710
|
rlm@215
|
711 #+name: test-header
|
rlm@215
|
712 #+begin_src clojure
|
rlm@215
|
713 (ns cortex.test.vision
|
rlm@215
|
714 (:use (cortex world sense util body vision))
|
rlm@215
|
715 (:use cortex.test.body)
|
rlm@215
|
716 (:import java.awt.image.BufferedImage)
|
rlm@215
|
717 (:import javax.swing.JPanel)
|
rlm@215
|
718 (:import javax.swing.SwingUtilities)
|
rlm@215
|
719 (:import java.awt.Dimension)
|
rlm@215
|
720 (:import javax.swing.JFrame)
|
rlm@215
|
721 (:import com.jme3.math.ColorRGBA)
|
rlm@215
|
722 (:import com.jme3.scene.Node)
|
rlm@215
|
723 (:import com.jme3.math.Vector3f)
|
rlm@216
|
724 (:import java.io.File)
|
rlm@216
|
725 (:import (com.aurellem.capture Capture RatchetTimer)))
|
rlm@215
|
726 #+end_src
|
rlm@215
|
727
|
rlm@216
|
728 * Onward!
|
rlm@216
|
729 - As a neat bonus, this idea behind simulated vision also enables one
|
rlm@216
|
730 to [[../../cortex/html/capture-video.html][capture live video feeds from jMonkeyEngine]].
|
rlm@216
|
731 - Now that we have vision, it's time to tackle [[./hearing.org][hearing]].
|
rlm@215
|
732
|
rlm@216
|
733 * Source Listing
|
rlm@216
|
734 - [[../src/cortex/vision.clj][cortex.vision]]
|
rlm@216
|
735 - [[../src/cortex/test/vision.clj][cortex.test.vision]]
|
rlm@216
|
736 - [[../src/cortex/video/magick2.clj][cortex.video.magick2]]
|
rlm@216
|
737 - [[../assets/Models/subtitles/worm-vision-subtitles.blend][worm-vision-subtitles.blend]]
|
rlm@216
|
738 #+html: <ul> <li> <a href="../org/sense.org">This org file</a> </li> </ul>
|
rlm@216
|
739 - [[http://hg.bortreb.com ][source-repository]]
|
rlm@216
|
740
|
rlm@35
|
741
|
rlm@24
|
742
|
rlm@212
|
743 * COMMENT Generate Source
|
rlm@34
|
744 #+begin_src clojure :tangle ../src/cortex/vision.clj
|
rlm@216
|
745 <<vision-header>>
|
rlm@216
|
746 <<pipeline-1>>
|
rlm@216
|
747 <<pipeline-2>>
|
rlm@216
|
748 <<retina>>
|
rlm@216
|
749 <<add-eye>>
|
rlm@216
|
750 <<sensitivity>>
|
rlm@216
|
751 <<eye-node>>
|
rlm@216
|
752 <<add-camera>>
|
rlm@216
|
753 <<kernel>>
|
rlm@216
|
754 <<main>>
|
rlm@216
|
755 <<display>>
|
rlm@24
|
756 #+end_src
|
rlm@24
|
757
|
rlm@68
|
758 #+begin_src clojure :tangle ../src/cortex/test/vision.clj
|
rlm@215
|
759 <<test-header>>
|
rlm@215
|
760 <<test-1>>
|
rlm@216
|
761 <<test-2>>
|
rlm@24
|
762 #+end_src
|
rlm@216
|
763
|
rlm@216
|
764 #+begin_src clojure :tangle ../src/cortex/video/magick2.clj
|
rlm@216
|
765 <<magick2>>
|
rlm@216
|
766 #+end_src
|