rlm@37
|
1 #+title: Simulated Sense of Touch
|
rlm@0
|
2 #+author: Robert McIntyre
|
rlm@0
|
3 #+email: rlm@mit.edu
|
rlm@37
|
4 #+description: Simulated touch for AI research using JMonkeyEngine and clojure.
|
rlm@37
|
5 #+keywords: simulation, tactile sense, jMonkeyEngine3, clojure
|
rlm@4
|
6 #+SETUPFILE: ../../aurellem/org/setup.org
|
rlm@4
|
7 #+INCLUDE: ../../aurellem/org/level-0.org
|
rlm@0
|
8
|
rlm@229
|
9
|
rlm@229
|
10
|
rlm@37
|
11 * Touch
|
rlm@0
|
12
|
rlm@226
|
13 Touch is critical to navigation and spatial reasoning and as such I
|
rlm@226
|
14 need a simulated version of it to give to my AI creatures.
|
rlm@0
|
15
|
rlm@228
|
16 However, touch in my virtual can not exactly correspond to human touch
|
rlm@228
|
17 because my creatures are made out of completely rigid segments that
|
rlm@228
|
18 don't deform like human skin.
|
rlm@228
|
19
|
rlm@228
|
20 Human skin has a wide array of touch sensors, each of which speciliaze
|
rlm@228
|
21 in detecting different vibrational modes and pressures. These sensors
|
rlm@228
|
22 can integrate a vast expanse of skin (i.e. your entire palm), or a
|
rlm@228
|
23 tiny patch of skin at the tip of your finger. The hairs of the skin
|
rlm@228
|
24 help detect objects before they even come into contact with the skin
|
rlm@228
|
25 proper.
|
rlm@228
|
26
|
rlm@228
|
27 Instead of measuring deformation or vibration, I surround each rigid
|
rlm@228
|
28 part with a plenitude of hair-like objects which do not interact with
|
rlm@228
|
29 the physical world. Physical objects can pass through them with no
|
rlm@228
|
30 effect. The hairs are able to measure contact with other objects, and
|
rlm@228
|
31 constantly report how much of their extent is covered. So, even though
|
rlm@228
|
32 the creature's body parts do not deform, the hairs create a margin
|
rlm@228
|
33 around those body parts which achieves a sense of touch which is a
|
rlm@228
|
34 hybrid between a human's sense of deformation and sense from hairs.
|
rlm@228
|
35
|
rlm@228
|
36 Implementing touch in jMonkeyEngine follows a different techinal route
|
rlm@228
|
37 than vision and hearing. Those two senses piggybacked off
|
rlm@228
|
38 jMonkeyEngine's 3D audio and video rendering subsystems. To simulate
|
rlm@228
|
39 Touch, I use jMonkeyEngine's physics system to execute many small
|
rlm@229
|
40 collision detections, one for each "hair". The placement of the
|
rlm@229
|
41 "hairs" is determined by a UV-mapped image which shows where each hair
|
rlm@229
|
42 should be on the 3D surface of the body.
|
rlm@228
|
43
|
rlm@229
|
44
|
rlm@229
|
45 * Defining Touch Meta-Data in Blender
|
rlm@229
|
46
|
rlm@229
|
47 Each geometry can have a single UV map which describes the position
|
rlm@229
|
48 and length of the "hairs" which will constitute its sense of
|
rlm@229
|
49 touch. This image path is stored under the "touch" key. The image
|
rlm@229
|
50 itself is grayscale, with black meaning a hair length of 0 (no hair is
|
rlm@229
|
51 present) and white meaning a hair length of =scale=, which is a float
|
rlm@229
|
52 stored under the key "scale". If the pixel is gray then the resultant
|
rlm@238
|
53 hair length is linearly interpolated between 0 and =scale=. I call
|
rlm@238
|
54 these "hairs" /feelers/.
|
rlm@229
|
55
|
rlm@231
|
56 #+name: meta-data
|
rlm@0
|
57 #+begin_src clojure
|
rlm@229
|
58 (defn tactile-sensor-profile
|
rlm@229
|
59 "Return the touch-sensor distribution image in BufferedImage format,
|
rlm@229
|
60 or nil if it does not exist."
|
rlm@229
|
61 [#^Geometry obj]
|
rlm@229
|
62 (if-let [image-path (meta-data obj "touch")]
|
rlm@229
|
63 (load-image image-path)))
|
rlm@233
|
64
|
rlm@233
|
65 (defn tactile-scale
|
rlm@233
|
66 "Return the maximum length of a hair. All hairs are scalled between
|
rlm@233
|
67 0.0 and this length, depending on their color. Black is 0, and
|
rlm@233
|
68 white is maximum length, and everything in between is scalled
|
rlm@233
|
69 linearlly. Default scale is 0.01 jMonkeyEngine units."
|
rlm@233
|
70 [#^Geometry obj]
|
rlm@233
|
71 (if-let [scale (meta-data obj "scale")]
|
rlm@233
|
72 scale 0.1))
|
rlm@228
|
73 #+end_src
|
rlm@156
|
74
|
rlm@229
|
75 ** TODO add image showing example touch-uv map
|
rlm@229
|
76 ** TODO add metadata display for worm
|
rlm@229
|
77
|
rlm@234
|
78
|
rlm@233
|
79 * Skin Creation
|
rlm@234
|
80 * TODO get the actual lengths for each hair
|
rlm@234
|
81
|
rlm@234
|
82 #+begin_src clojure
|
rlm@234
|
83 pixel-triangles
|
rlm@234
|
84 xyz-triangles
|
rlm@234
|
85 conversions (map triangles->affine-transform pixel-triangles
|
rlm@234
|
86 xyz-triangles)
|
rlm@234
|
87
|
rlm@234
|
88 #+end_src
|
rlm@234
|
89
|
rlm@238
|
90
|
rlm@238
|
91 =(touch-kernel)= generates the functions which implement the sense of
|
rlm@238
|
92 touch for a creature. These functions must do 6 things to obtain touch
|
rlm@238
|
93 data.
|
rlm@238
|
94
|
rlm@238
|
95 - Get the tactile profile image and scale paramaters which describe
|
rlm@238
|
96 the layout of feelers along the object's surface.
|
rlm@238
|
97 - Get the lengths of each feeler by analyzing the color of the
|
rlm@238
|
98 pixels in the tactile profile image.
|
rlm@238
|
99 - Find the triangles which make up the mesh in pixel-space and in
|
rlm@238
|
100 world-space.
|
rlm@238
|
101 - Find the coordinates of each pixel in world-space. These
|
rlm@238
|
102 coordinates are the origins of the feelers.
|
rlm@238
|
103 - Calculate the normals of the triangles in world space, and add
|
rlm@238
|
104 them to each of the origins of the feelers. These are the
|
rlm@238
|
105 normalized coordinates of the tips of the feelers.
|
rlm@238
|
106 - Generate some sort of topology for the sensors.
|
rlm@238
|
107
|
rlm@233
|
108 #+name: kernel
|
rlm@233
|
109 #+begin_src clojure
|
rlm@233
|
110 (in-ns 'cortex.touch)
|
rlm@233
|
111
|
rlm@234
|
112 (declare touch-topology touch-hairs set-ray)
|
rlm@234
|
113
|
rlm@233
|
114 (defn touch-kernel
|
rlm@234
|
115 "Constructs a function which will return tactile sensory data from
|
rlm@234
|
116 'geo when called from inside a running simulation"
|
rlm@234
|
117 [#^Geometry geo]
|
rlm@234
|
118 (let [[ray-reference-origins
|
rlm@234
|
119 ray-reference-tips
|
rlm@234
|
120 ray-lengths] (touch-hairs geo)
|
rlm@234
|
121 current-rays (map (fn [] (Ray.)) ray-reference-origins)
|
rlm@234
|
122 topology (touch-topology geo)]
|
rlm@234
|
123 (if (empty? ray-reference-origins) nil
|
rlm@234
|
124 (fn [node]
|
rlm@234
|
125 (let [transform (.getWorldMatrix geo)]
|
rlm@234
|
126 (dorun
|
rlm@234
|
127 (map (fn [ray ref-origin ref-tip length]
|
rlm@234
|
128 (set-ray ray transform ref-origin ref-tip length))
|
rlm@234
|
129 current-rays ray-reference-origins
|
rlm@234
|
130 ray-reference-tips ray-lengths))
|
rlm@234
|
131 (vector
|
rlm@234
|
132 topology
|
rlm@234
|
133 (vec
|
rlm@234
|
134 (for [ray current-rays]
|
rlm@234
|
135 (do
|
rlm@234
|
136 (let [results (CollisionResults.)]
|
rlm@234
|
137 (.collideWith node ray results)
|
rlm@234
|
138 (let [touch-objects
|
rlm@234
|
139 (filter #(not (= geo (.getGeometry %)))
|
rlm@234
|
140 results)]
|
rlm@234
|
141 [(if (empty? touch-objects)
|
rlm@234
|
142 (.getLimit ray)
|
rlm@234
|
143 (.getDistance (first touch-objects)))
|
rlm@234
|
144 (.getLimit ray)])))))))))))
|
rlm@234
|
145
|
rlm@234
|
146 (defn touch-kernel*
|
rlm@233
|
147 "Returns a function which returns tactile sensory data when called
|
rlm@233
|
148 inside a running simulation."
|
rlm@233
|
149 [#^Geometry geo]
|
rlm@233
|
150 (let [feeler-coords (feeler-coordinates geo)
|
rlm@233
|
151 tris (triangles geo)
|
rlm@233
|
152 limit (tactile-scale geo)]
|
rlm@233
|
153 (if (empty? (touch-topology geo))
|
rlm@233
|
154 nil
|
rlm@233
|
155 (fn [node]
|
rlm@233
|
156 (let [sensor-origins
|
rlm@233
|
157 (map
|
rlm@233
|
158 #(map (partial local-to-world geo) %)
|
rlm@233
|
159 feeler-coords)
|
rlm@233
|
160 triangle-normals
|
rlm@233
|
161 (map (partial get-ray-direction geo)
|
rlm@233
|
162 tris)
|
rlm@233
|
163 rays
|
rlm@233
|
164 (flatten
|
rlm@233
|
165 (map (fn [origins norm]
|
rlm@233
|
166 (map #(doto (Ray. % norm)
|
rlm@233
|
167 (.setLimit limit)) origins))
|
rlm@233
|
168 sensor-origins triangle-normals))]
|
rlm@233
|
169 (vector
|
rlm@233
|
170 (touch-topology geo)
|
rlm@233
|
171 (vec
|
rlm@233
|
172 (for [ray rays]
|
rlm@233
|
173 (do
|
rlm@233
|
174 (let [results (CollisionResults.)]
|
rlm@233
|
175 (.collideWith node ray results)
|
rlm@233
|
176 (let [touch-objects
|
rlm@233
|
177 (filter #(not (= geo (.getGeometry %)))
|
rlm@233
|
178 results)]
|
rlm@233
|
179 [(if (empty? touch-objects)
|
rlm@233
|
180 limit (.getDistance (first touch-objects)))
|
rlm@233
|
181 limit])))))))))))
|
rlm@233
|
182
|
rlm@233
|
183 (defn touch!
|
rlm@233
|
184 "Endow the creature with the sense of touch. Returns a sequence of
|
rlm@233
|
185 functions, one for each body part with a tactile-sensor-proile,
|
rlm@233
|
186 each of which when called returns sensory data for that body part."
|
rlm@233
|
187 [#^Node creature]
|
rlm@233
|
188 (filter
|
rlm@233
|
189 (comp not nil?)
|
rlm@233
|
190 (map touch-kernel
|
rlm@233
|
191 (filter #(isa? (class %) Geometry)
|
rlm@233
|
192 (node-seq creature)))))
|
rlm@233
|
193 #+end_src
|
rlm@233
|
194
|
rlm@238
|
195 * Sensor Related Functions
|
rlm@238
|
196
|
rlm@238
|
197 These functions analyze the touch-sensor-profile image convert the
|
rlm@238
|
198 location of each touch sensor from pixel coordinates to UV-coordinates
|
rlm@238
|
199 and XYZ-coordinates.
|
rlm@238
|
200
|
rlm@238
|
201 #+name: sensors
|
rlm@238
|
202 #+begin_src clojure
|
rlm@238
|
203 (defn sensors-in-triangle
|
rlm@238
|
204 "Locate the touch sensors in the triangle, returning a map of their
|
rlm@238
|
205 UV and geometry-relative coordinates."
|
rlm@238
|
206 [image mesh tri-index]
|
rlm@238
|
207 (let [width (.getWidth image)
|
rlm@238
|
208 height (.getHeight image)
|
rlm@238
|
209 UV-vertex-coords (triangle-UV-coord mesh width height tri-index)
|
rlm@238
|
210 bounds (convex-bounds UV-vertex-coords)
|
rlm@238
|
211
|
rlm@238
|
212 cutout-triangle (points->triangle UV-vertex-coords)
|
rlm@238
|
213 UV-sensor-coords
|
rlm@238
|
214 (filter (comp (partial inside-triangle? cutout-triangle)
|
rlm@238
|
215 (fn [[u v]] (Vector3f. u v 0)))
|
rlm@238
|
216 (white-coordinates image bounds))
|
rlm@238
|
217 UV->geometry (triangle-transformation
|
rlm@238
|
218 cutout-triangle
|
rlm@238
|
219 (mesh-triangle mesh tri-index))
|
rlm@238
|
220 geometry-sensor-coords
|
rlm@238
|
221 (map (fn [[u v]] (.mult UV->geometry (Vector3f. u v 0)))
|
rlm@238
|
222 UV-sensor-coords)]
|
rlm@238
|
223 {:UV UV-sensor-coords :geometry geometry-sensor-coords}))
|
rlm@238
|
224
|
rlm@238
|
225 (defn-memo locate-feelers
|
rlm@238
|
226 "Search the geometry's tactile UV profile for touch sensors,
|
rlm@238
|
227 returning their positions in geometry-relative coordinates."
|
rlm@238
|
228 [#^Geometry geo]
|
rlm@238
|
229 (let [mesh (.getMesh geo)
|
rlm@238
|
230 num-triangles (.getTriangleCount mesh)]
|
rlm@238
|
231 (if-let [image (tactile-sensor-profile geo)]
|
rlm@238
|
232 (map
|
rlm@238
|
233 (partial sensors-in-triangle image mesh)
|
rlm@238
|
234 (range num-triangles))
|
rlm@238
|
235 (repeat (.getTriangleCount mesh) {:UV nil :geometry nil}))))
|
rlm@238
|
236
|
rlm@238
|
237 (defn-memo touch-topology
|
rlm@238
|
238 "Return a sequence of vectors of the form [x y] describing the
|
rlm@238
|
239 \"topology\" of the tactile sensors. Points that are close together
|
rlm@238
|
240 in the touch-topology are generally close together in the simulation."
|
rlm@238
|
241 [#^Gemoetry geo]
|
rlm@238
|
242 (vec (collapse (reduce concat (map :UV (locate-feelers geo))))))
|
rlm@238
|
243
|
rlm@238
|
244 (defn-memo feeler-coordinates
|
rlm@238
|
245 "The location of the touch sensors in world-space coordinates."
|
rlm@238
|
246 [#^Geometry geo]
|
rlm@238
|
247 (vec (map :geometry (locate-feelers geo))))
|
rlm@238
|
248 #+end_src
|
rlm@238
|
249
|
rlm@238
|
250
|
rlm@238
|
251
|
rlm@238
|
252
|
rlm@233
|
253 * Visualizing Touch
|
rlm@233
|
254 #+name: visualization
|
rlm@233
|
255 #+begin_src clojure
|
rlm@233
|
256 (in-ns 'cortex.touch)
|
rlm@233
|
257
|
rlm@233
|
258 (defn touch->gray
|
rlm@233
|
259 "Convert a pair of [distance, max-distance] into a grayscale pixel"
|
rlm@233
|
260 [distance max-distance]
|
rlm@233
|
261 (gray
|
rlm@233
|
262 (- 255
|
rlm@233
|
263 (rem
|
rlm@233
|
264 (int
|
rlm@233
|
265 (* 255 (/ distance max-distance)))
|
rlm@233
|
266 256))))
|
rlm@233
|
267
|
rlm@233
|
268 (defn view-touch
|
rlm@233
|
269 "Creates a function which accepts a list of touch sensor-data and
|
rlm@233
|
270 displays each element to the screen."
|
rlm@233
|
271 []
|
rlm@233
|
272 (view-sense
|
rlm@233
|
273 (fn
|
rlm@233
|
274 [[coords sensor-data]]
|
rlm@233
|
275 (let [image (points->image coords)]
|
rlm@233
|
276 (dorun
|
rlm@233
|
277 (for [i (range (count coords))]
|
rlm@233
|
278 (.setRGB image ((coords i) 0) ((coords i) 1)
|
rlm@233
|
279 (apply touch->gray (sensor-data i)))))
|
rlm@233
|
280 image))))
|
rlm@233
|
281 #+end_src
|
rlm@233
|
282
|
rlm@233
|
283
|
rlm@233
|
284
|
rlm@228
|
285 * Triangle Manipulation Functions
|
rlm@228
|
286
|
rlm@229
|
287 The rigid bodies which make up a creature have an underlying
|
rlm@229
|
288 =Geometry=, which is a =Mesh= plus a =Material= and other important
|
rlm@229
|
289 data involved with displaying the body.
|
rlm@229
|
290
|
rlm@229
|
291 A =Mesh= is composed of =Triangles=, and each =Triangle= has three
|
rlm@229
|
292 verticies which have coordinates in XYZ space and UV space.
|
rlm@229
|
293
|
rlm@229
|
294 Here, =(triangles)= gets all the triangles which compose a mesh, and
|
rlm@229
|
295 =(triangle-UV-coord)= returns the the UV coordinates of the verticies
|
rlm@229
|
296 of a triangle.
|
rlm@229
|
297
|
rlm@231
|
298 #+name: triangles-1
|
rlm@228
|
299 #+begin_src clojure
|
rlm@228
|
300 (defn triangles
|
rlm@228
|
301 "Return a sequence of all the Triangles which compose a given
|
rlm@228
|
302 Geometry."
|
rlm@228
|
303 [#^Geometry geom]
|
rlm@228
|
304 (let
|
rlm@228
|
305 [mesh (.getMesh geom)
|
rlm@228
|
306 triangles (transient [])]
|
rlm@228
|
307 (dorun
|
rlm@228
|
308 (for [n (range (.getTriangleCount mesh))]
|
rlm@228
|
309 (let [tri (Triangle.)]
|
rlm@228
|
310 (.getTriangle mesh n tri)
|
rlm@228
|
311 ;; (.calculateNormal tri)
|
rlm@228
|
312 ;; (.calculateCenter tri)
|
rlm@228
|
313 (conj! triangles tri))))
|
rlm@228
|
314 (persistent! triangles)))
|
rlm@228
|
315
|
rlm@228
|
316 (defn mesh-triangle
|
rlm@228
|
317 "Get the triangle specified by triangle-index from the mesh within
|
rlm@228
|
318 bounds."
|
rlm@228
|
319 [#^Mesh mesh triangle-index]
|
rlm@228
|
320 (let [scratch (Triangle.)]
|
rlm@228
|
321 (.getTriangle mesh triangle-index scratch)
|
rlm@228
|
322 scratch))
|
rlm@228
|
323
|
rlm@228
|
324 (defn triangle-vertex-indices
|
rlm@228
|
325 "Get the triangle vertex indices of a given triangle from a given
|
rlm@228
|
326 mesh."
|
rlm@228
|
327 [#^Mesh mesh triangle-index]
|
rlm@228
|
328 (let [indices (int-array 3)]
|
rlm@228
|
329 (.getTriangle mesh triangle-index indices)
|
rlm@228
|
330 (vec indices)))
|
rlm@228
|
331
|
rlm@228
|
332 (defn vertex-UV-coord
|
rlm@228
|
333 "Get the UV-coordinates of the vertex named by vertex-index"
|
rlm@228
|
334 [#^Mesh mesh vertex-index]
|
rlm@228
|
335 (let [UV-buffer
|
rlm@228
|
336 (.getData
|
rlm@228
|
337 (.getBuffer
|
rlm@228
|
338 mesh
|
rlm@228
|
339 VertexBuffer$Type/TexCoord))]
|
rlm@228
|
340 [(.get UV-buffer (* vertex-index 2))
|
rlm@228
|
341 (.get UV-buffer (+ 1 (* vertex-index 2)))]))
|
rlm@228
|
342
|
rlm@228
|
343 (defn triangle-UV-coord
|
rlm@228
|
344 "Get the UV-cooridnates of the triangle's verticies."
|
rlm@228
|
345 [#^Mesh mesh width height triangle-index]
|
rlm@228
|
346 (map (fn [[u v]] (vector (* width u) (* height v)))
|
rlm@228
|
347 (map (partial vertex-UV-coord mesh)
|
rlm@228
|
348 (triangle-vertex-indices mesh triangle-index))))
|
rlm@228
|
349 #+end_src
|
rlm@228
|
350
|
rlm@228
|
351 * Schrapnel Conversion Functions
|
rlm@229
|
352
|
rlm@229
|
353 It is convienent to treat a =Triangle= as a sequence of verticies, and
|
rlm@229
|
354 a =Vector2f= and =Vector3f= as a sequence of floats. These conversion
|
rlm@229
|
355 functions make this easy. If these classes implemented =Iterable= then
|
rlm@229
|
356 this code would not be necessary. Hopefully they will in the future.
|
rlm@229
|
357
|
rlm@231
|
358 #+name: triangles-2
|
rlm@228
|
359 #+begin_src clojure
|
rlm@228
|
360 (defn triangle-seq [#^Triangle tri]
|
rlm@228
|
361 [(.get1 tri) (.get2 tri) (.get3 tri)])
|
rlm@228
|
362
|
rlm@228
|
363 (defn vector3f-seq [#^Vector3f v]
|
rlm@228
|
364 [(.getX v) (.getY v) (.getZ v)])
|
rlm@228
|
365
|
rlm@228
|
366 (defn point->vector2f [[u v]]
|
rlm@228
|
367 (Vector2f. u v))
|
rlm@228
|
368
|
rlm@228
|
369 (defn vector2f->vector3f [v]
|
rlm@228
|
370 (Vector3f. (.getX v) (.getY v) 0))
|
rlm@228
|
371
|
rlm@228
|
372 (defn map-triangle [f #^Triangle tri]
|
rlm@228
|
373 (Triangle.
|
rlm@228
|
374 (f 0 (.get1 tri))
|
rlm@228
|
375 (f 1 (.get2 tri))
|
rlm@228
|
376 (f 2 (.get3 tri))))
|
rlm@228
|
377
|
rlm@228
|
378 (defn points->triangle
|
rlm@228
|
379 "Convert a list of points into a triangle."
|
rlm@228
|
380 [points]
|
rlm@228
|
381 (apply #(Triangle. %1 %2 %3)
|
rlm@228
|
382 (map (fn [point]
|
rlm@228
|
383 (let [point (vec point)]
|
rlm@228
|
384 (Vector3f. (get point 0 0)
|
rlm@228
|
385 (get point 1 0)
|
rlm@228
|
386 (get point 2 0))))
|
rlm@228
|
387 (take 3 points))))
|
rlm@228
|
388 #+end_src
|
rlm@228
|
389
|
rlm@228
|
390 * Triangle Affine Transforms
|
rlm@228
|
391
|
rlm@229
|
392 The position of each hair is stored in a 2D image in UV
|
rlm@229
|
393 coordinates. To place the hair in 3D space we must convert from UV
|
rlm@229
|
394 coordinates to XYZ coordinates. Each =Triangle= has coordinates in
|
rlm@229
|
395 both UV-space and XYZ-space, which defines a unique [[http://mathworld.wolfram.com/AffineTransformation.html ][Affine Transform]]
|
rlm@229
|
396 for translating any coordinate within the UV triangle to the
|
rlm@229
|
397 cooresponding coordinate in the XYZ triangle.
|
rlm@229
|
398
|
rlm@231
|
399 #+name: triangles-3
|
rlm@228
|
400 #+begin_src clojure
|
rlm@228
|
401 (defn triangle->matrix4f
|
rlm@228
|
402 "Converts the triangle into a 4x4 matrix: The first three columns
|
rlm@228
|
403 contain the vertices of the triangle; the last contains the unit
|
rlm@228
|
404 normal of the triangle. The bottom row is filled with 1s."
|
rlm@228
|
405 [#^Triangle t]
|
rlm@228
|
406 (let [mat (Matrix4f.)
|
rlm@228
|
407 [vert-1 vert-2 vert-3]
|
rlm@228
|
408 ((comp vec map) #(.get t %) (range 3))
|
rlm@228
|
409 unit-normal (do (.calculateNormal t)(.getNormal t))
|
rlm@228
|
410 vertices [vert-1 vert-2 vert-3 unit-normal]]
|
rlm@228
|
411 (dorun
|
rlm@228
|
412 (for [row (range 4) col (range 3)]
|
rlm@228
|
413 (do
|
rlm@228
|
414 (.set mat col row (.get (vertices row)col))
|
rlm@228
|
415 (.set mat 3 row 1))))
|
rlm@228
|
416 mat))
|
rlm@228
|
417
|
rlm@228
|
418 (defn triangle-transformation
|
rlm@228
|
419 "Returns the affine transformation that converts each vertex in the
|
rlm@228
|
420 first triangle into the corresponding vertex in the second
|
rlm@228
|
421 triangle."
|
rlm@228
|
422 [#^Triangle tri-1 #^Triangle tri-2]
|
rlm@228
|
423 (.mult
|
rlm@228
|
424 (triangle->matrix4f tri-2)
|
rlm@228
|
425 (.invert (triangle->matrix4f tri-1))))
|
rlm@228
|
426 #+end_src
|
rlm@228
|
427
|
rlm@229
|
428 * Triangle Boundaries
|
rlm@229
|
429
|
rlm@229
|
430 For efficiency's sake I will divide the UV-image into small squares
|
rlm@229
|
431 which inscribe each UV-triangle, then extract the points which lie
|
rlm@229
|
432 inside the triangle and map them to 3D-space using
|
rlm@229
|
433 =(triangle-transform)= above. To do this I need a function,
|
rlm@229
|
434 =(inside-triangle?)=, which determines whether a point is inside a
|
rlm@229
|
435 triangle in 2D UV-space.
|
rlm@228
|
436
|
rlm@231
|
437 #+name: triangles-4
|
rlm@228
|
438 #+begin_src clojure
|
rlm@229
|
439 (defn convex-bounds
|
rlm@229
|
440 "Returns the smallest square containing the given vertices, as a
|
rlm@229
|
441 vector of integers [left top width height]."
|
rlm@229
|
442 [uv-verts]
|
rlm@229
|
443 (let [xs (map first uv-verts)
|
rlm@229
|
444 ys (map second uv-verts)
|
rlm@229
|
445 x0 (Math/floor (apply min xs))
|
rlm@229
|
446 y0 (Math/floor (apply min ys))
|
rlm@229
|
447 x1 (Math/ceil (apply max xs))
|
rlm@229
|
448 y1 (Math/ceil (apply max ys))]
|
rlm@229
|
449 [x0 y0 (- x1 x0) (- y1 y0)]))
|
rlm@229
|
450
|
rlm@229
|
451 (defn same-side?
|
rlm@229
|
452 "Given the points p1 and p2 and the reference point ref, is point p
|
rlm@229
|
453 on the same side of the line that goes through p1 and p2 as ref is?"
|
rlm@229
|
454 [p1 p2 ref p]
|
rlm@229
|
455 (<=
|
rlm@229
|
456 0
|
rlm@229
|
457 (.dot
|
rlm@229
|
458 (.cross (.subtract p2 p1) (.subtract p p1))
|
rlm@229
|
459 (.cross (.subtract p2 p1) (.subtract ref p1)))))
|
rlm@229
|
460
|
rlm@229
|
461 (defn inside-triangle?
|
rlm@229
|
462 "Is the point inside the triangle?"
|
rlm@229
|
463 {:author "Dylan Holmes"}
|
rlm@229
|
464 [#^Triangle tri #^Vector3f p]
|
rlm@229
|
465 (let [[vert-1 vert-2 vert-3] (triangle-seq tri)]
|
rlm@229
|
466 (and
|
rlm@229
|
467 (same-side? vert-1 vert-2 vert-3 p)
|
rlm@229
|
468 (same-side? vert-2 vert-3 vert-1 p)
|
rlm@229
|
469 (same-side? vert-3 vert-1 vert-2 p))))
|
rlm@229
|
470 #+end_src
|
rlm@229
|
471
|
rlm@229
|
472
|
rlm@228
|
473 * Physics Collision Objects
|
rlm@230
|
474
|
rlm@234
|
475 The "hairs" are actually =Rays= which extend from a point on a
|
rlm@230
|
476 =Triangle= in the =Mesh= normal to the =Triangle's= surface.
|
rlm@230
|
477
|
rlm@231
|
478 #+name: rays
|
rlm@228
|
479 #+begin_src clojure
|
rlm@228
|
480 (defn get-ray-origin
|
rlm@228
|
481 "Return the origin which a Ray would have to have to be in the exact
|
rlm@228
|
482 center of a particular Triangle in the Geometry in World
|
rlm@228
|
483 Coordinates."
|
rlm@228
|
484 [geom tri]
|
rlm@228
|
485 (let [new (Vector3f.)]
|
rlm@228
|
486 (.calculateCenter tri)
|
rlm@228
|
487 (.localToWorld geom (.getCenter tri) new) new))
|
rlm@228
|
488
|
rlm@228
|
489 (defn get-ray-direction
|
rlm@228
|
490 "Return the direction which a Ray would have to have to be to point
|
rlm@228
|
491 normal to the Triangle, in coordinates relative to the center of the
|
rlm@228
|
492 Triangle."
|
rlm@228
|
493 [geom tri]
|
rlm@228
|
494 (let [n+c (Vector3f.)]
|
rlm@228
|
495 (.calculateNormal tri)
|
rlm@228
|
496 (.calculateCenter tri)
|
rlm@228
|
497 (.localToWorld
|
rlm@228
|
498 geom
|
rlm@228
|
499 (.add (.getCenter tri) (.getNormal tri)) n+c)
|
rlm@228
|
500 (.subtract n+c (get-ray-origin geom tri))))
|
rlm@228
|
501 #+end_src
|
rlm@226
|
502 * Headers
|
rlm@231
|
503
|
rlm@231
|
504 #+name: touch-header
|
rlm@226
|
505 #+begin_src clojure
|
rlm@226
|
506 (ns cortex.touch
|
rlm@226
|
507 "Simulate the sense of touch in jMonkeyEngine3. Enables any Geometry
|
rlm@226
|
508 to be outfitted with touch sensors with density determined by a UV
|
rlm@226
|
509 image. In this way a Geometry can know what parts of itself are
|
rlm@226
|
510 touching nearby objects. Reads specially prepared blender files to
|
rlm@226
|
511 construct this sense automatically."
|
rlm@226
|
512 {:author "Robert McIntyre"}
|
rlm@226
|
513 (:use (cortex world util sense))
|
rlm@226
|
514 (:use clojure.contrib.def)
|
rlm@226
|
515 (:import (com.jme3.scene Geometry Node Mesh))
|
rlm@226
|
516 (:import com.jme3.collision.CollisionResults)
|
rlm@226
|
517 (:import com.jme3.scene.VertexBuffer$Type)
|
rlm@226
|
518 (:import (com.jme3.math Triangle Vector3f Vector2f Ray Matrix4f)))
|
rlm@226
|
519 #+end_src
|
rlm@37
|
520
|
rlm@232
|
521 * Adding Touch to the Worm
|
rlm@232
|
522
|
rlm@232
|
523 #+name: test-touch
|
rlm@232
|
524 #+begin_src clojure
|
rlm@232
|
525 (ns cortex.test.touch
|
rlm@232
|
526 (:use (cortex world util sense body touch))
|
rlm@232
|
527 (:use cortex.test.body))
|
rlm@232
|
528
|
rlm@232
|
529 (cortex.import/mega-import-jme3)
|
rlm@232
|
530
|
rlm@232
|
531 (defn test-touch []
|
rlm@232
|
532 (let [the-worm (doto (worm) (body!))
|
rlm@232
|
533 touch (touch! the-worm)
|
rlm@232
|
534 touch-display (view-touch)]
|
rlm@232
|
535 (world (nodify [the-worm (floor)])
|
rlm@232
|
536 standard-debug-controls
|
rlm@232
|
537
|
rlm@232
|
538 (fn [world]
|
rlm@232
|
539 (light-up-everything world))
|
rlm@232
|
540
|
rlm@232
|
541 (fn [world tpf]
|
rlm@232
|
542 (touch-display (map #(% (.getRootNode world)) touch))))))
|
rlm@232
|
543 #+end_src
|
rlm@228
|
544 * Source Listing
|
rlm@228
|
545 * Next
|
rlm@228
|
546
|
rlm@228
|
547
|
rlm@226
|
548 * COMMENT Code Generation
|
rlm@39
|
549 #+begin_src clojure :tangle ../src/cortex/touch.clj
|
rlm@231
|
550 <<touch-header>>
|
rlm@231
|
551 <<meta-data>>
|
rlm@231
|
552 <<triangles-1>>
|
rlm@231
|
553 <<triangles-2>>
|
rlm@231
|
554 <<triangles-3>>
|
rlm@231
|
555 <<triangles-4>>
|
rlm@231
|
556 <<sensors>>
|
rlm@231
|
557 <<rays>>
|
rlm@231
|
558 <<kernel>>
|
rlm@231
|
559 <<visualization>>
|
rlm@0
|
560 #+end_src
|
rlm@0
|
561
|
rlm@232
|
562
|
rlm@68
|
563 #+begin_src clojure :tangle ../src/cortex/test/touch.clj
|
rlm@232
|
564 <<test-touch>>
|
rlm@39
|
565 #+end_src
|
rlm@39
|
566
|
rlm@0
|
567
|
rlm@0
|
568
|
rlm@0
|
569
|
rlm@32
|
570
|
rlm@32
|
571
|
rlm@226
|
572
|