rlm@202
|
1 #+title: Helper Functions / Motivations
|
rlm@151
|
2 #+author: Robert McIntyre
|
rlm@151
|
3 #+email: rlm@mit.edu
|
rlm@151
|
4 #+description: sensory utilities
|
rlm@151
|
5 #+keywords: simulation, jMonkeyEngine3, clojure, simulated senses
|
rlm@151
|
6 #+SETUPFILE: ../../aurellem/org/setup.org
|
rlm@151
|
7 #+INCLUDE: ../../aurellem/org/level-0.org
|
rlm@151
|
8
|
rlm@197
|
9 * Blender Utilities
|
rlm@306
|
10 In blender, any object can be assigned an arbitrary number of key-value
|
rlm@306
|
11 pairs which are called "Custom Properties". These are accessible in
|
rlm@306
|
12 jMonkeyEngine when blender files are imported with the
|
rlm@273
|
13 =BlenderLoader=. =meta-data= extracts these properties.
|
rlm@198
|
14
|
rlm@198
|
15 #+name: blender-1
|
rlm@197
|
16 #+begin_src clojure
|
rlm@181
|
17 (defn meta-data
|
rlm@181
|
18 "Get the meta-data for a node created with blender."
|
rlm@181
|
19 [blender-node key]
|
rlm@151
|
20 (if-let [data (.getUserData blender-node "properties")]
|
rlm@198
|
21 (.findValue data key) nil))
|
rlm@198
|
22 #+end_src
|
rlm@151
|
23
|
rlm@198
|
24 Blender uses a different coordinate system than jMonkeyEngine so it
|
rlm@198
|
25 is useful to be able to convert between the two. These only come into
|
rlm@198
|
26 play when the meta-data of a node refers to a vector in the blender
|
rlm@198
|
27 coordinate system.
|
rlm@198
|
28
|
rlm@198
|
29 #+name: blender-2
|
rlm@198
|
30 #+begin_src clojure
|
rlm@197
|
31 (defn jme-to-blender
|
rlm@197
|
32 "Convert from JME coordinates to Blender coordinates"
|
rlm@197
|
33 [#^Vector3f in]
|
rlm@198
|
34 (Vector3f. (.getX in) (- (.getZ in)) (.getY in)))
|
rlm@151
|
35
|
rlm@197
|
36 (defn blender-to-jme
|
rlm@197
|
37 "Convert from Blender coordinates to JME coordinates"
|
rlm@197
|
38 [#^Vector3f in]
|
rlm@198
|
39 (Vector3f. (.getX in) (.getZ in) (- (.getY in))))
|
rlm@197
|
40 #+end_src
|
rlm@197
|
41
|
rlm@198
|
42 * Sense Topology
|
rlm@198
|
43
|
rlm@198
|
44 Human beings are three-dimensional objects, and the nerves that
|
rlm@198
|
45 transmit data from our various sense organs to our brain are
|
rlm@198
|
46 essentially one-dimensional. This leaves up to two dimensions in which
|
rlm@198
|
47 our sensory information may flow. For example, imagine your skin: it
|
rlm@198
|
48 is a two-dimensional surface around a three-dimensional object (your
|
rlm@198
|
49 body). It has discrete touch sensors embedded at various points, and
|
rlm@198
|
50 the density of these sensors corresponds to the sensitivity of that
|
rlm@198
|
51 region of skin. Each touch sensor connects to a nerve, all of which
|
rlm@198
|
52 eventually are bundled together as they travel up the spinal cord to
|
rlm@198
|
53 the brain. Intersect the spinal nerves with a guillotining plane and
|
rlm@198
|
54 you will see all of the sensory data of the skin revealed in a roughly
|
rlm@198
|
55 circular two-dimensional image which is the cross section of the
|
rlm@198
|
56 spinal cord. Points on this image that are close together in this
|
rlm@198
|
57 circle represent touch sensors that are /probably/ close together on
|
rlm@306
|
58 the skin, although there is of course some cutting and rearrangement
|
rlm@198
|
59 that has to be done to transfer the complicated surface of the skin
|
rlm@198
|
60 onto a two dimensional image.
|
rlm@198
|
61
|
rlm@198
|
62 Most human senses consist of many discrete sensors of various
|
rlm@198
|
63 properties distributed along a surface at various densities. For
|
rlm@198
|
64 skin, it is Pacinian corpuscles, Meissner's corpuscles, Merkel's
|
rlm@198
|
65 disks, and Ruffini's endings, which detect pressure and vibration of
|
rlm@198
|
66 various intensities. For ears, it is the stereocilia distributed
|
rlm@198
|
67 along the basilar membrane inside the cochlea; each one is sensitive
|
rlm@198
|
68 to a slightly different frequency of sound. For eyes, it is rods
|
rlm@198
|
69 and cones distributed along the surface of the retina. In each case,
|
rlm@198
|
70 we can describe the sense with a surface and a distribution of sensors
|
rlm@198
|
71 along that surface.
|
rlm@198
|
72
|
rlm@198
|
73 ** UV-maps
|
rlm@198
|
74
|
rlm@198
|
75 Blender and jMonkeyEngine already have support for exactly this sort
|
rlm@198
|
76 of data structure because it is used to "skin" models for games. It is
|
rlm@201
|
77 called [[http://wiki.blender.org/index.php/Doc:2.6/Manual/Textures/Mapping/UV][UV-mapping]]. The three-dimensional surface of a model is cut
|
rlm@201
|
78 and smooshed until it fits on a two-dimensional image. You paint
|
rlm@201
|
79 whatever you want on that image, and when the three-dimensional shape
|
rlm@201
|
80 is rendered in a game the smooshing and cutting us reversed and the
|
rlm@201
|
81 image appears on the three-dimensional object.
|
rlm@198
|
82
|
rlm@198
|
83 To make a sense, interpret the UV-image as describing the distribution
|
rlm@198
|
84 of that senses sensors. To get different types of sensors, you can
|
rlm@198
|
85 either use a different color for each type of sensor, or use multiple
|
rlm@198
|
86 UV-maps, each labeled with that sensor type. I generally use a white
|
rlm@306
|
87 pixel to mean the presence of a sensor and a black pixel to mean the
|
rlm@306
|
88 absence of a sensor, and use one UV-map for each sensor-type within a
|
rlm@198
|
89 given sense. The paths to the images are not stored as the actual
|
rlm@198
|
90 UV-map of the blender object but are instead referenced in the
|
rlm@198
|
91 meta-data of the node.
|
rlm@198
|
92
|
rlm@306
|
93 #+CAPTION: The UV-map for an elongated icososphere. The white dots each represent a touch sensor. They are dense in the regions that describe the tip of the finger, and less dense along the dorsal side of the finger opposite the tip.
|
rlm@198
|
94 #+ATTR_HTML: width="300"
|
rlm@198
|
95 [[../images/finger-UV.png]]
|
rlm@198
|
96
|
rlm@198
|
97 #+CAPTION: Ventral side of the UV-mapped finger. Notice the density of touch sensors at the tip.
|
rlm@198
|
98 #+ATTR_HTML: width="300"
|
rlm@198
|
99 [[../images/finger-1.png]]
|
rlm@198
|
100
|
rlm@198
|
101 #+CAPTION: Side view of the UV-mapped finger.
|
rlm@198
|
102 #+ATTR_HTML: width="300"
|
rlm@198
|
103 [[../images/finger-2.png]]
|
rlm@198
|
104
|
rlm@198
|
105 #+CAPTION: Head on view of the finger. In both the head and side views you can see the divide where the touch-sensors transition from high density to low density.
|
rlm@198
|
106 #+ATTR_HTML: width="300"
|
rlm@198
|
107 [[../images/finger-3.png]]
|
rlm@198
|
108
|
rlm@198
|
109 The following code loads images and gets the locations of the white
|
rlm@273
|
110 pixels so that they can be used to create senses. =load-image= finds
|
rlm@198
|
111 images using jMonkeyEngine's asset-manager, so the image path is
|
rlm@198
|
112 expected to be relative to the =assets= directory. Thanks to Dylan
|
rlm@273
|
113 for the beautiful version of =filter-pixels=.
|
rlm@198
|
114
|
rlm@198
|
115 #+name: topology-1
|
rlm@197
|
116 #+begin_src clojure
|
rlm@197
|
117 (defn load-image
|
rlm@197
|
118 "Load an image as a BufferedImage using the asset-manager system."
|
rlm@197
|
119 [asset-relative-path]
|
rlm@197
|
120 (ImageToAwt/convert
|
rlm@197
|
121 (.getImage (.loadTexture (asset-manager) asset-relative-path))
|
rlm@197
|
122 false false 0))
|
rlm@151
|
123
|
rlm@181
|
124 (def white 0xFFFFFF)
|
rlm@181
|
125
|
rlm@181
|
126 (defn white? [rgb]
|
rlm@181
|
127 (= (bit-and white rgb) white))
|
rlm@181
|
128
|
rlm@151
|
129 (defn filter-pixels
|
rlm@151
|
130 "List the coordinates of all pixels matching pred, within the bounds
|
rlm@198
|
131 provided. If bounds are not specified then the entire image is
|
rlm@198
|
132 searched.
|
rlm@182
|
133 bounds -> [x0 y0 width height]"
|
rlm@151
|
134 {:author "Dylan Holmes"}
|
rlm@151
|
135 ([pred #^BufferedImage image]
|
rlm@151
|
136 (filter-pixels pred image [0 0 (.getWidth image) (.getHeight image)]))
|
rlm@151
|
137 ([pred #^BufferedImage image [x0 y0 width height]]
|
rlm@151
|
138 ((fn accumulate [x y matches]
|
rlm@151
|
139 (cond
|
rlm@151
|
140 (>= y (+ height y0)) matches
|
rlm@151
|
141 (>= x (+ width x0)) (recur 0 (inc y) matches)
|
rlm@151
|
142 (pred (.getRGB image x y))
|
rlm@151
|
143 (recur (inc x) y (conj matches [x y]))
|
rlm@151
|
144 :else (recur (inc x) y matches)))
|
rlm@151
|
145 x0 y0 [])))
|
rlm@151
|
146
|
rlm@151
|
147 (defn white-coordinates
|
rlm@151
|
148 "Coordinates of all the white pixels in a subset of the image."
|
rlm@151
|
149 ([#^BufferedImage image bounds]
|
rlm@181
|
150 (filter-pixels white? image bounds))
|
rlm@151
|
151 ([#^BufferedImage image]
|
rlm@181
|
152 (filter-pixels white? image)))
|
rlm@198
|
153 #+end_src
|
rlm@151
|
154
|
rlm@198
|
155 ** Topology
|
rlm@151
|
156
|
rlm@198
|
157 Information from the senses is transmitted to the brain via bundles of
|
rlm@198
|
158 axons, whether it be the optic nerve or the spinal cord. While these
|
rlm@306
|
159 bundles more or less preserve the overall topology of a sense's
|
rlm@306
|
160 two-dimensional surface, they do not preserve the precise euclidean
|
rlm@273
|
161 distances between every sensor. =collapse= is here to smoosh the
|
rlm@306
|
162 sensors described by a UV-map into a contiguous region that still
|
rlm@306
|
163 preserves the topology of the original sense.
|
rlm@198
|
164
|
rlm@198
|
165 #+name: topology-2
|
rlm@198
|
166 #+begin_src clojure
|
rlm@235
|
167 (in-ns 'cortex.sense)
|
rlm@235
|
168
|
rlm@151
|
169 (defn average [coll]
|
rlm@151
|
170 (/ (reduce + coll) (count coll)))
|
rlm@151
|
171
|
rlm@235
|
172 (defn- collapse-1d
|
rlm@235
|
173 "One dimensional helper for collapse."
|
rlm@151
|
174 [center line]
|
rlm@151
|
175 (let [length (count line)
|
rlm@151
|
176 num-above (count (filter (partial < center) line))
|
rlm@151
|
177 num-below (- length num-above)]
|
rlm@151
|
178 (range (- center num-below)
|
rlm@151
|
179 (+ center num-above))))
|
rlm@151
|
180
|
rlm@151
|
181 (defn collapse
|
rlm@235
|
182 "Take a sequence of pairs of integers and collapse them into a
|
rlm@306
|
183 contiguous bitmap with no \"holes\" or negative entries, as close to
|
rlm@235
|
184 the origin [0 0] as the shape permits. The order of the points is
|
rlm@235
|
185 preserved.
|
rlm@235
|
186
|
rlm@235
|
187 eg.
|
rlm@235
|
188 (collapse [[-5 5] [5 5] --> [[0 1] [1 1]
|
rlm@235
|
189 [-5 -5] [5 -5]]) --> [0 0] [1 0]]
|
rlm@235
|
190
|
rlm@235
|
191 (collapse [[-5 5] [-5 -5] --> [[0 1] [0 0]
|
rlm@235
|
192 [ 5 -5] [ 5 5]]) --> [1 0] [1 1]]"
|
rlm@151
|
193 [points]
|
rlm@151
|
194 (if (empty? points) []
|
rlm@151
|
195 (let
|
rlm@151
|
196 [num-points (count points)
|
rlm@151
|
197 center (vector
|
rlm@151
|
198 (int (average (map first points)))
|
rlm@151
|
199 (int (average (map first points))))
|
rlm@151
|
200 flattened
|
rlm@151
|
201 (reduce
|
rlm@151
|
202 concat
|
rlm@151
|
203 (map
|
rlm@151
|
204 (fn [column]
|
rlm@151
|
205 (map vector
|
rlm@151
|
206 (map first column)
|
rlm@151
|
207 (collapse-1d (second center)
|
rlm@151
|
208 (map second column))))
|
rlm@151
|
209 (partition-by first (sort-by first points))))
|
rlm@151
|
210 squeezed
|
rlm@151
|
211 (reduce
|
rlm@151
|
212 concat
|
rlm@151
|
213 (map
|
rlm@151
|
214 (fn [row]
|
rlm@151
|
215 (map vector
|
rlm@151
|
216 (collapse-1d (first center)
|
rlm@151
|
217 (map first row))
|
rlm@151
|
218 (map second row)))
|
rlm@151
|
219 (partition-by second (sort-by second flattened))))
|
rlm@182
|
220 relocated
|
rlm@151
|
221 (let [min-x (apply min (map first squeezed))
|
rlm@151
|
222 min-y (apply min (map second squeezed))]
|
rlm@151
|
223 (map (fn [[x y]]
|
rlm@151
|
224 [(- x min-x)
|
rlm@151
|
225 (- y min-y)])
|
rlm@235
|
226 squeezed))
|
rlm@306
|
227 point-correspondence
|
rlm@235
|
228 (zipmap (sort points) (sort relocated))
|
rlm@235
|
229
|
rlm@235
|
230 original-order
|
rlm@306
|
231 (vec (map point-correspondence points))]
|
rlm@235
|
232 original-order)))
|
rlm@198
|
233 #+end_src
|
rlm@198
|
234 * Viewing Sense Data
|
rlm@151
|
235
|
rlm@198
|
236 It's vital to /see/ the sense data to make sure that everything is
|
rlm@273
|
237 behaving as it should. =view-sense= and its helper, =view-image=
|
rlm@200
|
238 are here so that each sense can define its own way of turning
|
rlm@200
|
239 sense-data into pictures, while the actual rendering of said pictures
|
rlm@273
|
240 stays in one central place. =points->image= helps senses generate a
|
rlm@200
|
241 base image onto which they can overlay actual sense data.
|
rlm@198
|
242
|
rlm@199
|
243 #+name: view-senses
|
rlm@198
|
244 #+begin_src clojure
|
rlm@199
|
245 (in-ns 'cortex.sense)
|
rlm@198
|
246
|
rlm@199
|
247 (defn view-image
|
rlm@306
|
248 "Initializes a JPanel on which you may draw a BufferedImage.
|
rlm@199
|
249 Returns a function that accepts a BufferedImage and draws it to the
|
rlm@199
|
250 JPanel. If given a directory it will save the images as png files
|
rlm@199
|
251 starting at 0000000.png and incrementing from there."
|
rlm@199
|
252 ([#^File save]
|
rlm@199
|
253 (let [idx (atom -1)
|
rlm@199
|
254 image
|
rlm@199
|
255 (atom
|
rlm@199
|
256 (BufferedImage. 1 1 BufferedImage/TYPE_4BYTE_ABGR))
|
rlm@199
|
257 panel
|
rlm@199
|
258 (proxy [JPanel] []
|
rlm@199
|
259 (paint
|
rlm@199
|
260 [graphics]
|
rlm@199
|
261 (proxy-super paintComponent graphics)
|
rlm@199
|
262 (.drawImage graphics @image 0 0 nil)))
|
rlm@199
|
263 frame (JFrame. "Display Image")]
|
rlm@199
|
264 (SwingUtilities/invokeLater
|
rlm@199
|
265 (fn []
|
rlm@199
|
266 (doto frame
|
rlm@199
|
267 (-> (.getContentPane) (.add panel))
|
rlm@199
|
268 (.pack)
|
rlm@199
|
269 (.setLocationRelativeTo nil)
|
rlm@199
|
270 (.setResizable true)
|
rlm@199
|
271 (.setVisible true))))
|
rlm@199
|
272 (fn [#^BufferedImage i]
|
rlm@199
|
273 (reset! image i)
|
rlm@199
|
274 (.setSize frame (+ 8 (.getWidth i)) (+ 28 (.getHeight i)))
|
rlm@199
|
275 (.repaint panel 0 0 (.getWidth i) (.getHeight i))
|
rlm@199
|
276 (if save
|
rlm@199
|
277 (ImageIO/write
|
rlm@199
|
278 i "png"
|
rlm@199
|
279 (File. save (format "%07d.png" (swap! idx inc))))))))
|
rlm@199
|
280 ([] (view-image nil)))
|
rlm@199
|
281
|
rlm@199
|
282 (defn view-sense
|
rlm@199
|
283 "Take a kernel that produces a BufferedImage from some sense data
|
rlm@199
|
284 and return a function which takes a list of sense data, uses the
|
rlm@199
|
285 kernel to convert to images, and displays those images, each in
|
rlm@199
|
286 its own JFrame."
|
rlm@199
|
287 [sense-display-kernel]
|
rlm@199
|
288 (let [windows (atom [])]
|
rlm@215
|
289 (fn this
|
rlm@215
|
290 ([data]
|
rlm@215
|
291 (this data nil))
|
rlm@215
|
292 ([data save-to]
|
rlm@215
|
293 (if (> (count data) (count @windows))
|
rlm@215
|
294 (reset!
|
rlm@215
|
295 windows
|
rlm@215
|
296 (doall
|
rlm@215
|
297 (map
|
rlm@215
|
298 (fn [idx]
|
rlm@215
|
299 (if save-to
|
rlm@215
|
300 (let [dir (File. save-to (str idx))]
|
rlm@215
|
301 (.mkdir dir)
|
rlm@215
|
302 (view-image dir))
|
rlm@215
|
303 (view-image))) (range (count data))))))
|
rlm@215
|
304 (dorun
|
rlm@215
|
305 (map
|
rlm@215
|
306 (fn [display datum]
|
rlm@215
|
307 (display (sense-display-kernel datum)))
|
rlm@215
|
308 @windows data))))))
|
rlm@215
|
309
|
rlm@199
|
310
|
rlm@200
|
311 (defn points->image
|
rlm@306
|
312 "Take a collection of points and visualize it as a BufferedImage."
|
rlm@200
|
313 [points]
|
rlm@200
|
314 (if (empty? points)
|
rlm@200
|
315 (BufferedImage. 1 1 BufferedImage/TYPE_BYTE_BINARY)
|
rlm@200
|
316 (let [xs (vec (map first points))
|
rlm@200
|
317 ys (vec (map second points))
|
rlm@200
|
318 x0 (apply min xs)
|
rlm@200
|
319 y0 (apply min ys)
|
rlm@200
|
320 width (- (apply max xs) x0)
|
rlm@200
|
321 height (- (apply max ys) y0)
|
rlm@200
|
322 image (BufferedImage. (inc width) (inc height)
|
rlm@200
|
323 BufferedImage/TYPE_INT_RGB)]
|
rlm@200
|
324 (dorun
|
rlm@200
|
325 (for [x (range (.getWidth image))
|
rlm@200
|
326 y (range (.getHeight image))]
|
rlm@200
|
327 (.setRGB image x y 0xFF0000)))
|
rlm@200
|
328 (dorun
|
rlm@200
|
329 (for [index (range (count points))]
|
rlm@200
|
330 (.setRGB image (- (xs index) x0) (- (ys index) y0) -1)))
|
rlm@200
|
331 image)))
|
rlm@200
|
332
|
rlm@198
|
333 (defn gray
|
rlm@198
|
334 "Create a gray RGB pixel with R, G, and B set to num. num must be
|
rlm@198
|
335 between 0 and 255."
|
rlm@198
|
336 [num]
|
rlm@198
|
337 (+ num
|
rlm@198
|
338 (bit-shift-left num 8)
|
rlm@198
|
339 (bit-shift-left num 16)))
|
rlm@197
|
340 #+end_src
|
rlm@197
|
341
|
rlm@198
|
342 * Building a Sense from Nodes
|
rlm@198
|
343 My method for defining senses in blender is the following:
|
rlm@198
|
344
|
rlm@198
|
345 Senses like vision and hearing are localized to a single point
|
rlm@198
|
346 and follow a particular object around. For these:
|
rlm@198
|
347
|
rlm@198
|
348 - Create a single top-level empty node whose name is the name of the sense
|
rlm@198
|
349 - Add empty nodes which each contain meta-data relevant
|
rlm@198
|
350 to the sense, including a UV-map describing the number/distribution
|
rlm@306
|
351 of sensors if applicable.
|
rlm@198
|
352 - Make each empty-node the child of the top-level
|
rlm@273
|
353 node. =sense-nodes= below generates functions to find these children.
|
rlm@198
|
354
|
rlm@198
|
355 For touch, store the path to the UV-map which describes touch-sensors in the
|
rlm@198
|
356 meta-data of the object to which that map applies.
|
rlm@198
|
357
|
rlm@198
|
358 Each sense provides code that analyzes the Node structure of the
|
rlm@198
|
359 creature and creates sense-functions. They also modify the Node
|
rlm@198
|
360 structure if necessary.
|
rlm@198
|
361
|
rlm@198
|
362 Empty nodes created in blender have no appearance or physical presence
|
rlm@198
|
363 in jMonkeyEngine, but do appear in the scene graph. Empty nodes that
|
rlm@198
|
364 represent a sense which "follows" another geometry (like eyes and
|
rlm@273
|
365 ears) follow the closest physical object. =closest-node= finds this
|
rlm@198
|
366 closest object given the Creature and a particular empty node.
|
rlm@198
|
367
|
rlm@198
|
368 #+name: node-1
|
rlm@197
|
369 #+begin_src clojure
|
rlm@198
|
370 (defn sense-nodes
|
rlm@198
|
371 "For some senses there is a special empty blender node whose
|
rlm@198
|
372 children are considered markers for an instance of that sense. This
|
rlm@198
|
373 function generates functions to find those children, given the name
|
rlm@198
|
374 of the special parent node."
|
rlm@198
|
375 [parent-name]
|
rlm@198
|
376 (fn [#^Node creature]
|
rlm@198
|
377 (if-let [sense-node (.getChild creature parent-name)]
|
rlm@198
|
378 (seq (.getChildren sense-node))
|
rlm@198
|
379 (do (println-repl "could not find" parent-name "node") []))))
|
rlm@198
|
380
|
rlm@197
|
381 (defn closest-node
|
rlm@201
|
382 "Return the physical node in creature which is closest to the given
|
rlm@201
|
383 node."
|
rlm@198
|
384 [#^Node creature #^Node empty]
|
rlm@197
|
385 (loop [radius (float 0.01)]
|
rlm@197
|
386 (let [results (CollisionResults.)]
|
rlm@197
|
387 (.collideWith
|
rlm@197
|
388 creature
|
rlm@198
|
389 (BoundingBox. (.getWorldTranslation empty)
|
rlm@197
|
390 radius radius radius)
|
rlm@197
|
391 results)
|
rlm@197
|
392 (if-let [target (first results)]
|
rlm@197
|
393 (.getGeometry target)
|
rlm@197
|
394 (recur (float (* 2 radius)))))))
|
rlm@197
|
395
|
rlm@198
|
396 (defn world-to-local
|
rlm@198
|
397 "Convert the world coordinates into coordinates relative to the
|
rlm@198
|
398 object (i.e. local coordinates), taking into account the rotation
|
rlm@198
|
399 of object."
|
rlm@198
|
400 [#^Spatial object world-coordinate]
|
rlm@198
|
401 (.worldToLocal object world-coordinate nil))
|
rlm@198
|
402
|
rlm@198
|
403 (defn local-to-world
|
rlm@198
|
404 "Convert the local coordinates into world relative coordinates"
|
rlm@198
|
405 [#^Spatial object local-coordinate]
|
rlm@198
|
406 (.localToWorld object local-coordinate nil))
|
rlm@198
|
407 #+end_src
|
rlm@198
|
408
|
rlm@200
|
409 ** Sense Binding
|
rlm@200
|
410
|
rlm@273
|
411 =bind-sense= binds either a Camera or a Listener object to any
|
rlm@198
|
412 object so that they will follow that object no matter how it
|
rlm@199
|
413 moves. It is used to create both eyes and ears.
|
rlm@198
|
414
|
rlm@198
|
415 #+name: node-2
|
rlm@198
|
416 #+begin_src clojure
|
rlm@197
|
417 (defn bind-sense
|
rlm@197
|
418 "Bind the sense to the Spatial such that it will maintain its
|
rlm@197
|
419 current position relative to the Spatial no matter how the spatial
|
rlm@197
|
420 moves. 'sense can be either a Camera or Listener object."
|
rlm@197
|
421 [#^Spatial obj sense]
|
rlm@197
|
422 (let [sense-offset (.subtract (.getLocation sense)
|
rlm@197
|
423 (.getWorldTranslation obj))
|
rlm@197
|
424 initial-sense-rotation (Quaternion. (.getRotation sense))
|
rlm@197
|
425 base-anti-rotation (.inverse (.getWorldRotation obj))]
|
rlm@197
|
426 (.addControl
|
rlm@197
|
427 obj
|
rlm@197
|
428 (proxy [AbstractControl] []
|
rlm@197
|
429 (controlUpdate [tpf]
|
rlm@197
|
430 (let [total-rotation
|
rlm@197
|
431 (.mult base-anti-rotation (.getWorldRotation obj))]
|
rlm@197
|
432 (.setLocation
|
rlm@197
|
433 sense
|
rlm@197
|
434 (.add
|
rlm@197
|
435 (.mult total-rotation sense-offset)
|
rlm@197
|
436 (.getWorldTranslation obj)))
|
rlm@197
|
437 (.setRotation
|
rlm@197
|
438 sense
|
rlm@197
|
439 (.mult total-rotation initial-sense-rotation))))
|
rlm@197
|
440 (controlRender [_ _])))))
|
rlm@197
|
441 #+end_src
|
rlm@164
|
442
|
rlm@200
|
443 Here is some example code which shows how a camera bound to a blue box
|
rlm@273
|
444 with =bind-sense= moves as the box is buffeted by white cannonballs.
|
rlm@199
|
445
|
rlm@199
|
446 #+name: test
|
rlm@199
|
447 #+begin_src clojure
|
rlm@199
|
448 (defn test-bind-sense
|
rlm@201
|
449 "Show a camera that stays in the same relative position to a blue
|
rlm@201
|
450 cube."
|
rlm@283
|
451 ([] (test-bind-sense false))
|
rlm@283
|
452 ([record?]
|
rlm@283
|
453 (let [eye-pos (Vector3f. 0 30 0)
|
rlm@283
|
454 rock (box 1 1 1 :color ColorRGBA/Blue
|
rlm@283
|
455 :position (Vector3f. 0 10 0)
|
rlm@283
|
456 :mass 30)
|
rlm@283
|
457 table (box 3 1 10 :color ColorRGBA/Gray :mass 0
|
rlm@283
|
458 :position (Vector3f. 0 -3 0))]
|
rlm@283
|
459 (world
|
rlm@283
|
460 (nodify [rock table])
|
rlm@283
|
461 standard-debug-controls
|
rlm@283
|
462 (fn init [world]
|
rlm@283
|
463 (let [cam (doto (.clone (.getCamera world))
|
rlm@283
|
464 (.setLocation eye-pos)
|
rlm@283
|
465 (.lookAt Vector3f/ZERO
|
rlm@283
|
466 Vector3f/UNIT_X))]
|
rlm@283
|
467 (bind-sense rock cam)
|
rlm@283
|
468 (.setTimer world (RatchetTimer. 60))
|
rlm@283
|
469 (if record?
|
rlm@283
|
470 (Capture/captureVideo
|
rlm@283
|
471 world (File. "/home/r/proj/cortex/render/bind-sense0")))
|
rlm@283
|
472 (add-camera!
|
rlm@283
|
473 world cam
|
rlm@283
|
474 (comp (view-image
|
rlm@283
|
475 (if record?
|
rlm@283
|
476 (File. "/home/r/proj/cortex/render/bind-sense1")))
|
rlm@283
|
477 BufferedImage!))
|
rlm@283
|
478 (add-camera! world (.getCamera world) no-op)))
|
rlm@283
|
479 no-op))))
|
rlm@199
|
480 #+end_src
|
rlm@199
|
481
|
rlm@199
|
482 #+begin_html
|
rlm@199
|
483 <video controls="controls" width="755">
|
rlm@199
|
484 <source src="../video/bind-sense.ogg" type="video/ogg"
|
rlm@199
|
485 preload="none" poster="../images/aurellem-1280x480.png" />
|
rlm@199
|
486 </video>
|
rlm@309
|
487 <br> <a href="http://youtu.be/DvoN2wWQ_6o"> YouTube </a>
|
rlm@199
|
488 #+end_html
|
rlm@199
|
489
|
rlm@200
|
490 With this, eyes are easy --- you just bind the camera closer to the
|
rlm@200
|
491 desired object, and set it to look outward instead of inward as it
|
rlm@200
|
492 does in the video.
|
rlm@199
|
493
|
rlm@200
|
494 (nb : the video was created with the following commands)
|
rlm@199
|
495
|
rlm@200
|
496 *** Combine Frames with ImageMagick
|
rlm@199
|
497 #+begin_src clojure :results silent
|
rlm@215
|
498 (ns cortex.video.magick
|
rlm@215
|
499 (:import java.io.File)
|
rlm@316
|
500 (:use clojure.java.shell))
|
rlm@215
|
501
|
rlm@215
|
502 (defn combine-images []
|
rlm@215
|
503 (let
|
rlm@215
|
504 [idx (atom -1)
|
rlm@215
|
505 left (rest
|
rlm@215
|
506 (sort
|
rlm@215
|
507 (file-seq (File. "/home/r/proj/cortex/render/bind-sense0/"))))
|
rlm@215
|
508 right (rest
|
rlm@215
|
509 (sort
|
rlm@215
|
510 (file-seq
|
rlm@215
|
511 (File. "/home/r/proj/cortex/render/bind-sense1/"))))
|
rlm@215
|
512 sub (rest
|
rlm@199
|
513 (sort
|
rlm@200
|
514 (file-seq
|
rlm@215
|
515 (File. "/home/r/proj/cortex/render/bind-senseB/"))))
|
rlm@215
|
516 sub* (concat sub (repeat 1000 (last sub)))]
|
rlm@215
|
517 (dorun
|
rlm@215
|
518 (map
|
rlm@215
|
519 (fn [im-1 im-2 sub]
|
rlm@215
|
520 (sh "convert" (.getCanonicalPath im-1)
|
rlm@215
|
521 (.getCanonicalPath im-2) "+append"
|
rlm@215
|
522 (.getCanonicalPath sub) "-append"
|
rlm@215
|
523 (.getCanonicalPath
|
rlm@215
|
524 (File. "/home/r/proj/cortex/render/bind-sense/"
|
rlm@215
|
525 (format "%07d.png" (swap! idx inc))))))
|
rlm@215
|
526 left right sub*))))
|
rlm@199
|
527 #+end_src
|
rlm@199
|
528
|
rlm@200
|
529 *** Encode Frames with ffmpeg
|
rlm@200
|
530
|
rlm@199
|
531 #+begin_src sh :results silent
|
rlm@199
|
532 cd /home/r/proj/cortex/render/
|
rlm@221
|
533 ffmpeg -r 30 -i bind-sense/%07d.png -b:v 9000k -vcodec libtheora bind-sense.ogg
|
rlm@199
|
534 #+end_src
|
rlm@199
|
535
|
rlm@211
|
536 * Headers
|
rlm@211
|
537 #+name: sense-header
|
rlm@197
|
538 #+begin_src clojure
|
rlm@198
|
539 (ns cortex.sense
|
rlm@198
|
540 "Here are functions useful in the construction of two or more
|
rlm@198
|
541 sensors/effectors."
|
rlm@306
|
542 {:author "Robert McIntyre"}
|
rlm@198
|
543 (:use (cortex world util))
|
rlm@198
|
544 (:import ij.process.ImageProcessor)
|
rlm@198
|
545 (:import jme3tools.converters.ImageToAwt)
|
rlm@198
|
546 (:import java.awt.image.BufferedImage)
|
rlm@198
|
547 (:import com.jme3.collision.CollisionResults)
|
rlm@198
|
548 (:import com.jme3.bounding.BoundingBox)
|
rlm@198
|
549 (:import (com.jme3.scene Node Spatial))
|
rlm@198
|
550 (:import com.jme3.scene.control.AbstractControl)
|
rlm@199
|
551 (:import (com.jme3.math Quaternion Vector3f))
|
rlm@199
|
552 (:import javax.imageio.ImageIO)
|
rlm@199
|
553 (:import java.io.File)
|
rlm@199
|
554 (:import (javax.swing JPanel JFrame SwingUtilities)))
|
rlm@198
|
555 #+end_src
|
rlm@187
|
556
|
rlm@211
|
557 #+name: test-header
|
rlm@211
|
558 #+begin_src clojure
|
rlm@211
|
559 (ns cortex.test.sense
|
rlm@211
|
560 (:use (cortex world util sense vision))
|
rlm@211
|
561 (:import
|
rlm@211
|
562 java.io.File
|
rlm@211
|
563 (com.jme3.math Vector3f ColorRGBA)
|
rlm@211
|
564 (com.aurellem.capture RatchetTimer Capture)))
|
rlm@211
|
565 #+end_src
|
rlm@211
|
566
|
rlm@198
|
567 * Source Listing
|
rlm@211
|
568 - [[../src/cortex/sense.clj][cortex.sense]]
|
rlm@211
|
569 - [[../src/cortex/test/sense.clj][cortex.test.sense]]
|
rlm@211
|
570 - [[../assets/Models/subtitles/subtitles.blend][subtitles.blend]]
|
rlm@211
|
571 - [[../assets/Models/subtitles/Lake_CraterLake03_sm.hdr][subtitles reflection map]]
|
rlm@211
|
572 #+html: <ul> <li> <a href="../org/sense.org">This org file</a> </li> </ul>
|
rlm@217
|
573 - [[http://hg.bortreb.com ][source-repository]]
|
rlm@211
|
574
|
rlm@211
|
575 * Next
|
rlm@211
|
576 Now that some of the preliminaries are out of the way, in the [[./body.org][next
|
rlm@211
|
577 post]] I'll create a simulated body.
|
rlm@198
|
578
|
rlm@187
|
579
|
rlm@151
|
580 * COMMENT generate source
|
rlm@151
|
581 #+begin_src clojure :tangle ../src/cortex/sense.clj
|
rlm@211
|
582 <<sense-header>>
|
rlm@198
|
583 <<blender-1>>
|
rlm@198
|
584 <<blender-2>>
|
rlm@198
|
585 <<topology-1>>
|
rlm@198
|
586 <<topology-2>>
|
rlm@198
|
587 <<node-1>>
|
rlm@198
|
588 <<node-2>>
|
rlm@197
|
589 <<view-senses>>
|
rlm@151
|
590 #+end_src
|
rlm@199
|
591
|
rlm@199
|
592 #+begin_src clojure :tangle ../src/cortex/test/sense.clj
|
rlm@211
|
593 <<test-header>>
|
rlm@199
|
594 <<test>>
|
rlm@199
|
595 #+end_src
|
rlm@215
|
596
|
rlm@215
|
597 #+begin_src clojure :tangle ../src/cortex/video/magick.clj
|
rlm@215
|
598 <<magick>>
|
rlm@215
|
599 #+end_src
|