annotate org/vision.org @ 227:2a7f57e7efdb

working on touch.org
author Robert McIntyre <rlm@mit.edu>
date Sat, 11 Feb 2012 14:12:17 -0700
parents 5f14fd7b1288
children 3c9724c8d86b
rev   line source
rlm@34 1 #+title: Simulated Sense of Sight
rlm@23 2 #+author: Robert McIntyre
rlm@23 3 #+email: rlm@mit.edu
rlm@38 4 #+description: Simulated sight for AI research using JMonkeyEngine3 and clojure
rlm@34 5 #+keywords: computer vision, jMonkeyEngine3, clojure
rlm@23 6 #+SETUPFILE: ../../aurellem/org/setup.org
rlm@23 7 #+INCLUDE: ../../aurellem/org/level-0.org
rlm@23 8 #+babel: :mkdirp yes :noweb yes :exports both
rlm@23 9
rlm@194 10 * Vision
rlm@216 11
rlm@212 12 Vision is one of the most important senses for humans, so I need to
rlm@212 13 build a simulated sense of vision for my AI. I will do this with
rlm@212 14 simulated eyes. Each eye can be independely moved and should see its
rlm@212 15 own version of the world depending on where it is.
rlm@212 16
rlm@218 17 Making these simulated eyes a reality is simple bacause jMonkeyEngine
rlm@218 18 already conatains extensive support for multiple views of the same 3D
rlm@218 19 simulated world. The reason jMonkeyEngine has this support is because
rlm@218 20 the support is necessary to create games with split-screen
rlm@218 21 views. Multiple views are also used to create efficient
rlm@212 22 pseudo-reflections by rendering the scene from a certain perspective
rlm@212 23 and then projecting it back onto a surface in the 3D world.
rlm@212 24
rlm@218 25 #+caption: jMonkeyEngine supports multiple views to enable split-screen games, like GoldenEye, which was one of the first games to use split-screen views.
rlm@212 26 [[../images/goldeneye-4-player.png]]
rlm@212 27
rlm@213 28 * Brief Description of jMonkeyEngine's Rendering Pipeline
rlm@212 29
rlm@213 30 jMonkeyEngine allows you to create a =ViewPort=, which represents a
rlm@213 31 view of the simulated world. You can create as many of these as you
rlm@213 32 want. Every frame, the =RenderManager= iterates through each
rlm@213 33 =ViewPort=, rendering the scene in the GPU. For each =ViewPort= there
rlm@213 34 is a =FrameBuffer= which represents the rendered image in the GPU.
rlm@151 35
rlm@213 36 Each =ViewPort= can have any number of attached =SceneProcessor=
rlm@213 37 objects, which are called every time a new frame is rendered. A
rlm@219 38 =SceneProcessor= recieves its =ViewPort's= =FrameBuffer= and can do
rlm@219 39 whatever it wants to the data. Often this consists of invoking GPU
rlm@219 40 specific operations on the rendered image. The =SceneProcessor= can
rlm@219 41 also copy the GPU image data to RAM and process it with the CPU.
rlm@151 42
rlm@213 43 * The Vision Pipeline
rlm@151 44
rlm@213 45 Each eye in the simulated creature needs it's own =ViewPort= so that
rlm@213 46 it can see the world from its own perspective. To this =ViewPort=, I
rlm@214 47 add a =SceneProcessor= that feeds the visual data to any arbitray
rlm@213 48 continuation function for further processing. That continuation
rlm@213 49 function may perform both CPU and GPU operations on the data. To make
rlm@213 50 this easy for the continuation function, the =SceneProcessor=
rlm@213 51 maintains appropriatly sized buffers in RAM to hold the data. It does
rlm@218 52 not do any copying from the GPU to the CPU itself because it is a slow
rlm@218 53 operation.
rlm@214 54
rlm@213 55 #+name: pipeline-1
rlm@213 56 #+begin_src clojure
rlm@113 57 (defn vision-pipeline
rlm@34 58 "Create a SceneProcessor object which wraps a vision processing
rlm@113 59 continuation function. The continuation is a function that takes
rlm@113 60 [#^Renderer r #^FrameBuffer fb #^ByteBuffer b #^BufferedImage bi],
rlm@113 61 each of which has already been appropiately sized."
rlm@23 62 [continuation]
rlm@23 63 (let [byte-buffer (atom nil)
rlm@113 64 renderer (atom nil)
rlm@113 65 image (atom nil)]
rlm@23 66 (proxy [SceneProcessor] []
rlm@23 67 (initialize
rlm@23 68 [renderManager viewPort]
rlm@23 69 (let [cam (.getCamera viewPort)
rlm@23 70 width (.getWidth cam)
rlm@23 71 height (.getHeight cam)]
rlm@23 72 (reset! renderer (.getRenderer renderManager))
rlm@23 73 (reset! byte-buffer
rlm@23 74 (BufferUtils/createByteBuffer
rlm@113 75 (* width height 4)))
rlm@113 76 (reset! image (BufferedImage.
rlm@113 77 width height
rlm@113 78 BufferedImage/TYPE_4BYTE_ABGR))))
rlm@23 79 (isInitialized [] (not (nil? @byte-buffer)))
rlm@23 80 (reshape [_ _ _])
rlm@23 81 (preFrame [_])
rlm@23 82 (postQueue [_])
rlm@23 83 (postFrame
rlm@23 84 [#^FrameBuffer fb]
rlm@23 85 (.clear @byte-buffer)
rlm@113 86 (continuation @renderer fb @byte-buffer @image))
rlm@23 87 (cleanup []))))
rlm@213 88 #+end_src
rlm@213 89
rlm@213 90 The continuation function given to =(vision-pipeline)= above will be
rlm@213 91 given a =Renderer= and three containers for image data. The
rlm@218 92 =FrameBuffer= references the GPU image data, but the pixel data can
rlm@218 93 not be used directly on the CPU. The =ByteBuffer= and =BufferedImage=
rlm@219 94 are initially "empty" but are sized to hold the data in the
rlm@213 95 =FrameBuffer=. I call transfering the GPU image data to the CPU
rlm@213 96 structures "mixing" the image data. I have provided three functions to
rlm@213 97 do this mixing.
rlm@213 98
rlm@213 99 #+name: pipeline-2
rlm@213 100 #+begin_src clojure
rlm@113 101 (defn frameBuffer->byteBuffer!
rlm@113 102 "Transfer the data in the graphics card (Renderer, FrameBuffer) to
rlm@113 103 the CPU (ByteBuffer)."
rlm@113 104 [#^Renderer r #^FrameBuffer fb #^ByteBuffer bb]
rlm@113 105 (.readFrameBuffer r fb bb) bb)
rlm@113 106
rlm@113 107 (defn byteBuffer->bufferedImage!
rlm@113 108 "Convert the C-style BGRA image data in the ByteBuffer bb to the AWT
rlm@113 109 style ABGR image data and place it in BufferedImage bi."
rlm@113 110 [#^ByteBuffer bb #^BufferedImage bi]
rlm@113 111 (Screenshots/convertScreenShot bb bi) bi)
rlm@113 112
rlm@113 113 (defn BufferedImage!
rlm@113 114 "Continuation which will grab the buffered image from the materials
rlm@113 115 provided by (vision-pipeline)."
rlm@113 116 [#^Renderer r #^FrameBuffer fb #^ByteBuffer bb #^BufferedImage bi]
rlm@113 117 (byteBuffer->bufferedImage!
rlm@113 118 (frameBuffer->byteBuffer! r fb bb) bi))
rlm@213 119 #+end_src
rlm@112 120
rlm@213 121 Note that it is possible to write vision processing algorithms
rlm@213 122 entirely in terms of =BufferedImage= inputs. Just compose that
rlm@213 123 =BufferedImage= algorithm with =(BufferedImage!)=. However, a vision
rlm@213 124 processing algorithm that is entirely hosted on the GPU does not have
rlm@213 125 to pay for this convienence.
rlm@213 126
rlm@214 127 * COMMENT asdasd
rlm@213 128
rlm@213 129 (vision creature) will take an optional :skip argument which will
rlm@213 130 inform the continuations in scene processor to skip the given
rlm@213 131 number of cycles 0 means that no cycles will be skipped.
rlm@213 132
rlm@213 133 (vision creature) will return [init-functions sensor-functions].
rlm@213 134 The init-functions are each single-arg functions that take the
rlm@213 135 world and register the cameras and must each be called before the
rlm@213 136 corresponding sensor-functions. Each init-function returns the
rlm@213 137 viewport for that eye which can be manipulated, saved, etc. Each
rlm@213 138 sensor-function is a thunk and will return data in the same
rlm@213 139 format as the tactile-sensor functions the structure is
rlm@213 140 [topology, sensor-data]. Internally, these sensor-functions
rlm@213 141 maintain a reference to sensor-data which is periodically updated
rlm@213 142 by the continuation function established by its init-function.
rlm@213 143 They can be queried every cycle, but their information may not
rlm@213 144 necessairly be different every cycle.
rlm@213 145
rlm@214 146 * Physical Eyes
rlm@214 147
rlm@214 148 The vision pipeline described above handles the flow of rendered
rlm@214 149 images. Now, we need simulated eyes to serve as the source of these
rlm@214 150 images.
rlm@214 151
rlm@214 152 An eye is described in blender in the same way as a joint. They are
rlm@214 153 zero dimensional empty objects with no geometry whose local coordinate
rlm@214 154 system determines the orientation of the resulting eye. All eyes are
rlm@214 155 childern of a parent node named "eyes" just as all joints have a
rlm@214 156 parent named "joints". An eye binds to the nearest physical object
rlm@214 157 with =(bind-sense=).
rlm@214 158
rlm@214 159 #+name: add-eye
rlm@214 160 #+begin_src clojure
rlm@215 161 (in-ns 'cortex.vision)
rlm@215 162
rlm@214 163 (defn add-eye!
rlm@214 164 "Create a Camera centered on the current position of 'eye which
rlm@214 165 follows the closest physical node in 'creature and sends visual
rlm@215 166 data to 'continuation. The camera will point in the X direction and
rlm@215 167 use the Z vector as up as determined by the rotation of these
rlm@215 168 vectors in blender coordinate space. Use XZY rotation for the node
rlm@215 169 in blender."
rlm@214 170 [#^Node creature #^Spatial eye]
rlm@214 171 (let [target (closest-node creature eye)
rlm@214 172 [cam-width cam-height] (eye-dimensions eye)
rlm@215 173 cam (Camera. cam-width cam-height)
rlm@215 174 rot (.getWorldRotation eye)]
rlm@214 175 (.setLocation cam (.getWorldTranslation eye))
rlm@218 176 (.lookAtDirection
rlm@218 177 cam ; this part is not a mistake and
rlm@218 178 (.mult rot Vector3f/UNIT_X) ; is consistent with using Z in
rlm@218 179 (.mult rot Vector3f/UNIT_Y)) ; blender as the UP vector.
rlm@214 180 (.setFrustumPerspective
rlm@215 181 cam 45 (/ (.getWidth cam) (.getHeight cam)) 1 1000)
rlm@215 182 (bind-sense target cam) cam))
rlm@214 183 #+end_src
rlm@214 184
rlm@214 185 Here, the camera is created based on metadata on the eye-node and
rlm@214 186 attached to the nearest physical object with =(bind-sense)=
rlm@214 187
rlm@214 188
rlm@214 189 ** The Retina
rlm@214 190
rlm@214 191 An eye is a surface (the retina) which contains many discrete sensors
rlm@218 192 to detect light. These sensors have can have different light-sensing
rlm@214 193 properties. In humans, each discrete sensor is sensitive to red,
rlm@214 194 blue, green, or gray. These different types of sensors can have
rlm@214 195 different spatial distributions along the retina. In humans, there is
rlm@214 196 a fovea in the center of the retina which has a very high density of
rlm@214 197 color sensors, and a blind spot which has no sensors at all. Sensor
rlm@219 198 density decreases in proportion to distance from the fovea.
rlm@214 199
rlm@214 200 I want to be able to model any retinal configuration, so my eye-nodes
rlm@214 201 in blender contain metadata pointing to images that describe the
rlm@214 202 percise position of the individual sensors using white pixels. The
rlm@214 203 meta-data also describes the percise sensitivity to light that the
rlm@214 204 sensors described in the image have. An eye can contain any number of
rlm@214 205 these images. For example, the metadata for an eye might look like
rlm@214 206 this:
rlm@214 207
rlm@214 208 #+begin_src clojure
rlm@214 209 {0xFF0000 "Models/test-creature/retina-small.png"}
rlm@214 210 #+end_src
rlm@214 211
rlm@214 212 #+caption: The retinal profile image "Models/test-creature/retina-small.png". White pixels are photo-sensitive elements. The distribution of white pixels is denser in the middle and falls off at the edges and is inspired by the human retina.
rlm@214 213 [[../assets/Models/test-creature/retina-small.png]]
rlm@214 214
rlm@214 215 Together, the number 0xFF0000 and the image image above describe the
rlm@214 216 placement of red-sensitive sensory elements.
rlm@214 217
rlm@214 218 Meta-data to very crudely approximate a human eye might be something
rlm@214 219 like this:
rlm@214 220
rlm@214 221 #+begin_src clojure
rlm@214 222 (let [retinal-profile "Models/test-creature/retina-small.png"]
rlm@214 223 {0xFF0000 retinal-profile
rlm@214 224 0x00FF00 retinal-profile
rlm@214 225 0x0000FF retinal-profile
rlm@214 226 0xFFFFFF retinal-profile})
rlm@214 227 #+end_src
rlm@214 228
rlm@214 229 The numbers that serve as keys in the map determine a sensor's
rlm@214 230 relative sensitivity to the channels red, green, and blue. These
rlm@218 231 sensitivity values are packed into an integer in the order =|_|R|G|B|=
rlm@218 232 in 8-bit fields. The RGB values of a pixel in the image are added
rlm@214 233 together with these sensitivities as linear weights. Therfore,
rlm@214 234 0xFF0000 means sensitive to red only while 0xFFFFFF means sensitive to
rlm@214 235 all colors equally (gray).
rlm@214 236
rlm@214 237 For convienence I've defined a few symbols for the more common
rlm@214 238 sensitivity values.
rlm@214 239
rlm@214 240 #+name: sensitivity
rlm@214 241 #+begin_src clojure
rlm@214 242 (defvar sensitivity-presets
rlm@214 243 {:all 0xFFFFFF
rlm@214 244 :red 0xFF0000
rlm@214 245 :blue 0x0000FF
rlm@214 246 :green 0x00FF00}
rlm@214 247 "Retinal sensitivity presets for sensors that extract one channel
rlm@219 248 (:red :blue :green) or average all channels (:all)")
rlm@214 249 #+end_src
rlm@214 250
rlm@214 251 ** Metadata Processing
rlm@214 252
rlm@214 253 =(retina-sensor-profile)= extracts a map from the eye-node in the same
rlm@214 254 format as the example maps above. =(eye-dimensions)= finds the
rlm@219 255 dimensions of the smallest image required to contain all the retinal
rlm@214 256 sensor maps.
rlm@214 257
rlm@216 258 #+name: retina
rlm@214 259 #+begin_src clojure
rlm@214 260 (defn retina-sensor-profile
rlm@214 261 "Return a map of pixel sensitivity numbers to BufferedImages
rlm@214 262 describing the distribution of light-sensitive components of this
rlm@214 263 eye. :red, :green, :blue, :gray are already defined as extracting
rlm@214 264 the red, green, blue, and average components respectively."
rlm@214 265 [#^Spatial eye]
rlm@214 266 (if-let [eye-map (meta-data eye "eye")]
rlm@214 267 (map-vals
rlm@214 268 load-image
rlm@214 269 (eval (read-string eye-map)))))
rlm@214 270
rlm@218 271 (defn eye-dimensions
rlm@218 272 "Returns [width, height] determined by the metadata of the eye."
rlm@214 273 [#^Spatial eye]
rlm@214 274 (let [dimensions
rlm@214 275 (map #(vector (.getWidth %) (.getHeight %))
rlm@214 276 (vals (retina-sensor-profile eye)))]
rlm@214 277 [(apply max (map first dimensions))
rlm@214 278 (apply max (map second dimensions))]))
rlm@214 279 #+end_src
rlm@214 280
rlm@214 281 * Eye Creation
rlm@214 282 First off, get the children of the "eyes" empty node to find all the
rlm@214 283 eyes the creature has.
rlm@216 284 #+name: eye-node
rlm@214 285 #+begin_src clojure
rlm@214 286 (defvar
rlm@214 287 ^{:arglists '([creature])}
rlm@214 288 eyes
rlm@214 289 (sense-nodes "eyes")
rlm@214 290 "Return the children of the creature's \"eyes\" node.")
rlm@214 291 #+end_src
rlm@214 292
rlm@215 293 Then, add the camera created by =(add-eye!)= to the simulation by
rlm@215 294 creating a new viewport.
rlm@214 295
rlm@216 296 #+name: add-camera
rlm@213 297 #+begin_src clojure
rlm@169 298 (defn add-camera!
rlm@169 299 "Add a camera to the world, calling continuation on every frame
rlm@34 300 produced."
rlm@167 301 [#^Application world camera continuation]
rlm@23 302 (let [width (.getWidth camera)
rlm@23 303 height (.getHeight camera)
rlm@23 304 render-manager (.getRenderManager world)
rlm@23 305 viewport (.createMainView render-manager "eye-view" camera)]
rlm@23 306 (doto viewport
rlm@23 307 (.setClearFlags true true true)
rlm@112 308 (.setBackgroundColor ColorRGBA/Black)
rlm@113 309 (.addProcessor (vision-pipeline continuation))
rlm@23 310 (.attachScene (.getRootNode world)))))
rlm@215 311 #+end_src
rlm@151 312
rlm@151 313
rlm@218 314 The eye's continuation function should register the viewport with the
rlm@218 315 simulation the first time it is called, use the CPU to extract the
rlm@215 316 appropriate pixels from the rendered image and weight them by each
rlm@218 317 sensor's sensitivity. I have the option to do this processing in
rlm@218 318 native code for a slight gain in speed. I could also do it in the GPU
rlm@218 319 for a massive gain in speed. =(vision-kernel)= generates a list of
rlm@218 320 such continuation functions, one for each channel of the eye.
rlm@151 321
rlm@216 322 #+name: kernel
rlm@215 323 #+begin_src clojure
rlm@215 324 (in-ns 'cortex.vision)
rlm@151 325
rlm@215 326 (defrecord attached-viewport [vision-fn viewport-fn]
rlm@215 327 clojure.lang.IFn
rlm@215 328 (invoke [this world] (vision-fn world))
rlm@215 329 (applyTo [this args] (apply vision-fn args)))
rlm@151 330
rlm@216 331 (defn pixel-sense [sensitivity pixel]
rlm@216 332 (let [s-r (bit-shift-right (bit-and 0xFF0000 sensitivity) 16)
rlm@216 333 s-g (bit-shift-right (bit-and 0x00FF00 sensitivity) 8)
rlm@216 334 s-b (bit-and 0x0000FF sensitivity)
rlm@216 335
rlm@216 336 p-r (bit-shift-right (bit-and 0xFF0000 pixel) 16)
rlm@216 337 p-g (bit-shift-right (bit-and 0x00FF00 pixel) 8)
rlm@216 338 p-b (bit-and 0x0000FF pixel)
rlm@216 339
rlm@216 340 total-sensitivity (* 255 (+ s-r s-g s-b))]
rlm@216 341 (float (/ (+ (* s-r p-r)
rlm@216 342 (* s-g p-g)
rlm@216 343 (* s-b p-b))
rlm@216 344 total-sensitivity))))
rlm@216 345
rlm@215 346 (defn vision-kernel
rlm@171 347 "Returns a list of functions, each of which will return a color
rlm@171 348 channel's worth of visual information when called inside a running
rlm@171 349 simulation."
rlm@151 350 [#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
rlm@169 351 (let [retinal-map (retina-sensor-profile eye)
rlm@169 352 camera (add-eye! creature eye)
rlm@151 353 vision-image
rlm@151 354 (atom
rlm@151 355 (BufferedImage. (.getWidth camera)
rlm@151 356 (.getHeight camera)
rlm@170 357 BufferedImage/TYPE_BYTE_BINARY))
rlm@170 358 register-eye!
rlm@170 359 (runonce
rlm@170 360 (fn [world]
rlm@170 361 (add-camera!
rlm@170 362 world camera
rlm@170 363 (let [counter (atom 0)]
rlm@170 364 (fn [r fb bb bi]
rlm@170 365 (if (zero? (rem (swap! counter inc) (inc skip)))
rlm@170 366 (reset! vision-image
rlm@170 367 (BufferedImage! r fb bb bi))))))))]
rlm@151 368 (vec
rlm@151 369 (map
rlm@151 370 (fn [[key image]]
rlm@151 371 (let [whites (white-coordinates image)
rlm@151 372 topology (vec (collapse whites))
rlm@216 373 sensitivity (sensitivity-presets key key)]
rlm@215 374 (attached-viewport.
rlm@215 375 (fn [world]
rlm@215 376 (register-eye! world)
rlm@215 377 (vector
rlm@215 378 topology
rlm@215 379 (vec
rlm@215 380 (for [[x y] whites]
rlm@216 381 (pixel-sense
rlm@216 382 sensitivity
rlm@216 383 (.getRGB @vision-image x y))))))
rlm@215 384 register-eye!)))
rlm@215 385 retinal-map))))
rlm@151 386
rlm@215 387 (defn gen-fix-display
rlm@215 388 "Create a function to call to restore a simulation's display when it
rlm@215 389 is disrupted by a Viewport."
rlm@215 390 []
rlm@215 391 (runonce
rlm@215 392 (fn [world]
rlm@215 393 (add-camera! world (.getCamera world) no-op))))
rlm@215 394 #+end_src
rlm@170 395
rlm@215 396 Note that since each of the functions generated by =(vision-kernel)=
rlm@215 397 shares the same =(register-eye!)= function, the eye will be registered
rlm@215 398 only once the first time any of the functions from the list returned
rlm@215 399 by =(vision-kernel)= is called. Each of the functions returned by
rlm@215 400 =(vision-kernel)= also allows access to the =Viewport= through which
rlm@215 401 it recieves images.
rlm@215 402
rlm@215 403 The in-game display can be disrupted by all the viewports that the
rlm@215 404 functions greated by =(vision-kernel)= add. This doesn't affect the
rlm@215 405 simulation or the simulated senses, but can be annoying.
rlm@215 406 =(gen-fix-display)= restores the in-simulation display.
rlm@215 407
rlm@215 408 ** Vision!
rlm@215 409
rlm@218 410 All the hard work has been done; all that remains is to apply
rlm@215 411 =(vision-kernel)= to each eye in the creature and gather the results
rlm@215 412 into one list of functions.
rlm@215 413
rlm@216 414 #+name: main
rlm@215 415 #+begin_src clojure
rlm@170 416 (defn vision!
rlm@170 417 "Returns a function which returns visual sensory data when called
rlm@218 418 inside a running simulation."
rlm@151 419 [#^Node creature & {skip :skip :or {skip 0}}]
rlm@151 420 (reduce
rlm@170 421 concat
rlm@167 422 (for [eye (eyes creature)]
rlm@215 423 (vision-kernel creature eye))))
rlm@215 424 #+end_src
rlm@151 425
rlm@215 426 ** Visualization of Vision
rlm@215 427
rlm@215 428 It's vital to have a visual representation for each sense. Here I use
rlm@215 429 =(view-sense)= to construct a function that will create a display for
rlm@215 430 visual data.
rlm@215 431
rlm@216 432 #+name: display
rlm@215 433 #+begin_src clojure
rlm@216 434 (in-ns 'cortex.vision)
rlm@216 435
rlm@189 436 (defn view-vision
rlm@189 437 "Creates a function which accepts a list of visual sensor-data and
rlm@189 438 displays each element of the list to the screen."
rlm@189 439 []
rlm@188 440 (view-sense
rlm@188 441 (fn
rlm@188 442 [[coords sensor-data]]
rlm@188 443 (let [image (points->image coords)]
rlm@188 444 (dorun
rlm@188 445 (for [i (range (count coords))]
rlm@188 446 (.setRGB image ((coords i) 0) ((coords i) 1)
rlm@216 447 (gray (int (* 255 (sensor-data i)))))))
rlm@189 448 image))))
rlm@34 449 #+end_src
rlm@23 450
rlm@215 451 * Tests
rlm@112 452
rlm@215 453 ** Basic Test
rlm@23 454
rlm@215 455 This is a basic test for the vision system. It only tests the
rlm@215 456 vision-pipeline and does not deal with loadig eyes from a blender
rlm@215 457 file. The code creates two videos of the same rotating cube from
rlm@215 458 different angles.
rlm@23 459
rlm@215 460 #+name: test-1
rlm@23 461 #+begin_src clojure
rlm@215 462 (in-ns 'cortex.test.vision)
rlm@23 463
rlm@219 464 (defn test-pipeline
rlm@69 465 "Testing vision:
rlm@69 466 Tests the vision system by creating two views of the same rotating
rlm@69 467 object from different angles and displaying both of those views in
rlm@69 468 JFrames.
rlm@69 469
rlm@69 470 You should see a rotating cube, and two windows,
rlm@69 471 each displaying a different view of the cube."
rlm@36 472 []
rlm@58 473 (let [candy
rlm@58 474 (box 1 1 1 :physical? false :color ColorRGBA/Blue)]
rlm@112 475 (world
rlm@112 476 (doto (Node.)
rlm@112 477 (.attachChild candy))
rlm@112 478 {}
rlm@112 479 (fn [world]
rlm@112 480 (let [cam (.clone (.getCamera world))
rlm@112 481 width (.getWidth cam)
rlm@112 482 height (.getHeight cam)]
rlm@169 483 (add-camera! world cam
rlm@215 484 (comp
rlm@215 485 (view-image
rlm@215 486 (File. "/home/r/proj/cortex/render/vision/1"))
rlm@215 487 BufferedImage!))
rlm@169 488 (add-camera! world
rlm@112 489 (doto (.clone cam)
rlm@112 490 (.setLocation (Vector3f. -10 0 0))
rlm@112 491 (.lookAt Vector3f/ZERO Vector3f/UNIT_Y))
rlm@215 492 (comp
rlm@215 493 (view-image
rlm@215 494 (File. "/home/r/proj/cortex/render/vision/2"))
rlm@215 495 BufferedImage!))
rlm@112 496 ;; This is here to restore the main view
rlm@112 497 ;; after the other views have completed processing
rlm@169 498 (add-camera! world (.getCamera world) no-op)))
rlm@112 499 (fn [world tpf]
rlm@112 500 (.rotate candy (* tpf 0.2) 0 0)))))
rlm@23 501 #+end_src
rlm@23 502
rlm@215 503 #+begin_html
rlm@215 504 <div class="figure">
rlm@215 505 <video controls="controls" width="755">
rlm@215 506 <source src="../video/spinning-cube.ogg" type="video/ogg"
rlm@215 507 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@215 508 </video>
rlm@215 509 <p>A rotating cube viewed from two different perspectives.</p>
rlm@215 510 </div>
rlm@215 511 #+end_html
rlm@215 512
rlm@215 513 Creating multiple eyes like this can be used for stereoscopic vision
rlm@215 514 simulation in a single creature or for simulating multiple creatures,
rlm@215 515 each with their own sense of vision.
rlm@215 516
rlm@215 517 ** Adding Vision to the Worm
rlm@215 518
rlm@218 519 To the worm from the last post, I add a new node that describes its
rlm@215 520 eyes.
rlm@215 521
rlm@215 522 #+attr_html: width=755
rlm@215 523 #+caption: The worm with newly added empty nodes describing a single eye.
rlm@215 524 [[../images/worm-with-eye.png]]
rlm@215 525
rlm@215 526 The node highlighted in yellow is the root level "eyes" node. It has
rlm@218 527 a single child, highlighted in orange, which describes a single
rlm@218 528 eye. This is the "eye" node. It is placed so that the worm will have
rlm@218 529 an eye located in the center of the flat portion of its lower
rlm@218 530 hemispherical section.
rlm@218 531
rlm@218 532 The two nodes which are not highlighted describe the single joint of
rlm@218 533 the worm.
rlm@215 534
rlm@215 535 The metadata of the eye-node is:
rlm@215 536
rlm@215 537 #+begin_src clojure :results verbatim :exports both
rlm@215 538 (cortex.sense/meta-data
rlm@218 539 (.getChild (.getChild (cortex.test.body/worm) "eyes") "eye") "eye")
rlm@215 540 #+end_src
rlm@215 541
rlm@215 542 #+results:
rlm@215 543 : "(let [retina \"Models/test-creature/retina-small.png\"]
rlm@215 544 : {:all retina :red retina :green retina :blue retina})"
rlm@215 545
rlm@215 546 This is the approximation to the human eye described earlier.
rlm@215 547
rlm@216 548 #+name: test-2
rlm@215 549 #+begin_src clojure
rlm@215 550 (in-ns 'cortex.test.vision)
rlm@215 551
rlm@216 552 (defn change-color [obj color]
rlm@216 553 (println-repl obj)
rlm@216 554 (if obj
rlm@216 555 (.setColor (.getMaterial obj) "Color" color)))
rlm@216 556
rlm@216 557 (defn colored-cannon-ball [color]
rlm@216 558 (comp #(change-color % color)
rlm@216 559 (fire-cannon-ball)))
rlm@215 560
rlm@215 561 (defn test-worm-vision []
rlm@215 562 (let [the-worm (doto (worm)(body!))
rlm@215 563 vision (vision! the-worm)
rlm@215 564 vision-display (view-vision)
rlm@215 565 fix-display (gen-fix-display)
rlm@215 566 me (sphere 0.5 :color ColorRGBA/Blue :physical? false)
rlm@215 567 x-axis
rlm@215 568 (box 1 0.01 0.01 :physical? false :color ColorRGBA/Red
rlm@215 569 :position (Vector3f. 0 -5 0))
rlm@215 570 y-axis
rlm@215 571 (box 0.01 1 0.01 :physical? false :color ColorRGBA/Green
rlm@215 572 :position (Vector3f. 0 -5 0))
rlm@215 573 z-axis
rlm@215 574 (box 0.01 0.01 1 :physical? false :color ColorRGBA/Blue
rlm@216 575 :position (Vector3f. 0 -5 0))
rlm@216 576 timer (RatchetTimer. 60)]
rlm@215 577
rlm@215 578 (world (nodify [(floor) the-worm x-axis y-axis z-axis me])
rlm@216 579 (assoc standard-debug-controls
rlm@216 580 "key-r" (colored-cannon-ball ColorRGBA/Red)
rlm@216 581 "key-b" (colored-cannon-ball ColorRGBA/Blue)
rlm@216 582 "key-g" (colored-cannon-ball ColorRGBA/Green))
rlm@215 583 (fn [world]
rlm@215 584 (light-up-everything world)
rlm@216 585 (speed-up world)
rlm@216 586 (.setTimer world timer)
rlm@216 587 (display-dialated-time world timer)
rlm@215 588 ;; add a view from the worm's perspective
rlm@215 589 (add-camera!
rlm@215 590 world
rlm@215 591 (add-eye! the-worm
rlm@215 592 (.getChild
rlm@215 593 (.getChild the-worm "eyes") "eye"))
rlm@215 594 (comp
rlm@215 595 (view-image
rlm@215 596 (File. "/home/r/proj/cortex/render/worm-vision/worm-view"))
rlm@215 597 BufferedImage!))
rlm@215 598 (set-gravity world Vector3f/ZERO)
rlm@216 599 (try
rlm@216 600 (Capture/captureVideo
rlm@216 601 world
rlm@216 602 (File. "/home/r/proj/cortex/render/worm-vision/main-view"))))
rlm@216 603
rlm@215 604 (fn [world _ ]
rlm@215 605 (.setLocalTranslation me (.getLocation (.getCamera world)))
rlm@215 606 (vision-display
rlm@215 607 (map #(% world) vision)
rlm@215 608 (File. "/home/r/proj/cortex/render/worm-vision"))
rlm@215 609 (fix-display world)))))
rlm@215 610 #+end_src
rlm@215 611
rlm@218 612 The world consists of the worm and a flat gray floor. I can shoot red,
rlm@218 613 green, blue and white cannonballs at the worm. The worm is initially
rlm@218 614 looking down at the floor, and there is no gravity. My perspective
rlm@218 615 (the Main View), the worm's perspective (Worm View) and the 4 sensor
rlm@218 616 channels that comprise the worm's eye are all saved frame-by-frame to
rlm@218 617 disk.
rlm@218 618
rlm@218 619 * Demonstration of Vision
rlm@218 620 #+begin_html
rlm@218 621 <div class="figure">
rlm@218 622 <video controls="controls" width="755">
rlm@218 623 <source src="../video/worm-vision.ogg" type="video/ogg"
rlm@218 624 preload="none" poster="../images/aurellem-1280x480.png" />
rlm@218 625 </video>
rlm@218 626 <p>Simulated Vision in a Virtual Environment</p>
rlm@218 627 </div>
rlm@218 628 #+end_html
rlm@218 629
rlm@218 630 ** Generate the Worm Video from Frames
rlm@216 631 #+name: magick2
rlm@216 632 #+begin_src clojure
rlm@216 633 (ns cortex.video.magick2
rlm@216 634 (:import java.io.File)
rlm@216 635 (:use clojure.contrib.shell-out))
rlm@216 636
rlm@216 637 (defn images [path]
rlm@216 638 (sort (rest (file-seq (File. path)))))
rlm@216 639
rlm@216 640 (def base "/home/r/proj/cortex/render/worm-vision/")
rlm@216 641
rlm@216 642 (defn pics [file]
rlm@216 643 (images (str base file)))
rlm@216 644
rlm@216 645 (defn combine-images []
rlm@216 646 (let [main-view (pics "main-view")
rlm@216 647 worm-view (pics "worm-view")
rlm@216 648 blue (pics "0")
rlm@216 649 green (pics "1")
rlm@216 650 red (pics "2")
rlm@216 651 gray (pics "3")
rlm@216 652 blender (let [b-pics (pics "blender")]
rlm@216 653 (concat b-pics (repeat 9001 (last b-pics))))
rlm@216 654 background (repeat 9001 (File. (str base "background.png")))
rlm@216 655 targets (map
rlm@216 656 #(File. (str base "out/" (format "%07d.png" %)))
rlm@216 657 (range 0 (count main-view)))]
rlm@216 658 (dorun
rlm@216 659 (pmap
rlm@216 660 (comp
rlm@216 661 (fn [[background main-view worm-view red green blue gray blender target]]
rlm@216 662 (println target)
rlm@216 663 (sh "convert"
rlm@216 664 background
rlm@216 665 main-view "-geometry" "+18+17" "-composite"
rlm@216 666 worm-view "-geometry" "+677+17" "-composite"
rlm@216 667 green "-geometry" "+685+430" "-composite"
rlm@216 668 red "-geometry" "+788+430" "-composite"
rlm@216 669 blue "-geometry" "+894+430" "-composite"
rlm@216 670 gray "-geometry" "+1000+430" "-composite"
rlm@216 671 blender "-geometry" "+0+0" "-composite"
rlm@216 672 target))
rlm@216 673 (fn [& args] (map #(.getCanonicalPath %) args)))
rlm@216 674 background main-view worm-view red green blue gray blender targets))))
rlm@216 675 #+end_src
rlm@216 676
rlm@216 677 #+begin_src sh :results silent
rlm@216 678 cd /home/r/proj/cortex/render/worm-vision
rlm@216 679 ffmpeg -r 25 -b 9001k -i out/%07d.png -vcodec libtheora worm-vision.ogg
rlm@216 680 #+end_src
rlm@216 681
rlm@215 682 * Headers
rlm@215 683
rlm@213 684 #+name: vision-header
rlm@213 685 #+begin_src clojure
rlm@213 686 (ns cortex.vision
rlm@213 687 "Simulate the sense of vision in jMonkeyEngine3. Enables multiple
rlm@213 688 eyes from different positions to observe the same world, and pass
rlm@213 689 the observed data to any arbitray function. Automatically reads
rlm@216 690 eye-nodes from specially prepared blender files and instantiates
rlm@213 691 them in the world as actual eyes."
rlm@213 692 {:author "Robert McIntyre"}
rlm@213 693 (:use (cortex world sense util))
rlm@213 694 (:use clojure.contrib.def)
rlm@213 695 (:import com.jme3.post.SceneProcessor)
rlm@219 696 (:import (com.jme3.util Buffe rUtils Screenshots))
rlm@213 697 (:import java.nio.ByteBuffer)
rlm@213 698 (:import java.awt.image.BufferedImage)
rlm@213 699 (:import (com.jme3.renderer ViewPort Camera))
rlm@216 700 (:import (com.jme3.math ColorRGBA Vector3f Matrix3f))
rlm@213 701 (:import com.jme3.renderer.Renderer)
rlm@213 702 (:import com.jme3.app.Application)
rlm@213 703 (:import com.jme3.texture.FrameBuffer)
rlm@213 704 (:import (com.jme3.scene Node Spatial)))
rlm@213 705 #+end_src
rlm@112 706
rlm@215 707 #+name: test-header
rlm@215 708 #+begin_src clojure
rlm@215 709 (ns cortex.test.vision
rlm@215 710 (:use (cortex world sense util body vision))
rlm@215 711 (:use cortex.test.body)
rlm@215 712 (:import java.awt.image.BufferedImage)
rlm@215 713 (:import javax.swing.JPanel)
rlm@215 714 (:import javax.swing.SwingUtilities)
rlm@215 715 (:import java.awt.Dimension)
rlm@215 716 (:import javax.swing.JFrame)
rlm@215 717 (:import com.jme3.math.ColorRGBA)
rlm@215 718 (:import com.jme3.scene.Node)
rlm@215 719 (:import com.jme3.math.Vector3f)
rlm@216 720 (:import java.io.File)
rlm@216 721 (:import (com.aurellem.capture Capture RatchetTimer)))
rlm@215 722 #+end_src
rlm@215 723
rlm@216 724 * Onward!
rlm@216 725 - As a neat bonus, this idea behind simulated vision also enables one
rlm@216 726 to [[../../cortex/html/capture-video.html][capture live video feeds from jMonkeyEngine]].
rlm@216 727 - Now that we have vision, it's time to tackle [[./hearing.org][hearing]].
rlm@215 728
rlm@216 729 * Source Listing
rlm@216 730 - [[../src/cortex/vision.clj][cortex.vision]]
rlm@216 731 - [[../src/cortex/test/vision.clj][cortex.test.vision]]
rlm@216 732 - [[../src/cortex/video/magick2.clj][cortex.video.magick2]]
rlm@216 733 - [[../assets/Models/subtitles/worm-vision-subtitles.blend][worm-vision-subtitles.blend]]
rlm@216 734 #+html: <ul> <li> <a href="../org/sense.org">This org file</a> </li> </ul>
rlm@216 735 - [[http://hg.bortreb.com ][source-repository]]
rlm@216 736
rlm@35 737
rlm@24 738
rlm@212 739 * COMMENT Generate Source
rlm@34 740 #+begin_src clojure :tangle ../src/cortex/vision.clj
rlm@216 741 <<vision-header>>
rlm@216 742 <<pipeline-1>>
rlm@216 743 <<pipeline-2>>
rlm@216 744 <<retina>>
rlm@216 745 <<add-eye>>
rlm@216 746 <<sensitivity>>
rlm@216 747 <<eye-node>>
rlm@216 748 <<add-camera>>
rlm@216 749 <<kernel>>
rlm@216 750 <<main>>
rlm@216 751 <<display>>
rlm@24 752 #+end_src
rlm@24 753
rlm@68 754 #+begin_src clojure :tangle ../src/cortex/test/vision.clj
rlm@215 755 <<test-header>>
rlm@215 756 <<test-1>>
rlm@216 757 <<test-2>>
rlm@24 758 #+end_src
rlm@216 759
rlm@216 760 #+begin_src clojure :tangle ../src/cortex/video/magick2.clj
rlm@216 761 <<magick2>>
rlm@216 762 #+end_src