Poly-Vitrification

Vision:

Polymerization enables rapid, safe vitrification.

Steps

Starting point: Insect fructose-glycerol-trehalose system.

- 1.) Enable penetrating fructose.
- 2.) Explore other sugars/derivatives for polymerization properties.
- 3.) Test fructose as CPA additive.

Approaches to increasing T_g

Available Sugars

- Analyze mixtures of available sugars and derivatives
 - Reduced toxicity
 - Increased Tg

3-o-methylglucose

trehalose

Loading Methods

- Sugar loaded liposomes or micelles
 - Could work for low concentration sugars
- Enzymatically triggered CPA-delivery platform

The Team: Diverse Expertise

Peter Kilbride*Univ. College London*Large Volume Cryopreservation

Robert McIntyre
*MIT, 21CM
*Cryobiologist

Rebecca Sandlin, PhD
*Harvard Medical School
*Chemist

Navid Manuchehrabadi, PhD
*University of Minnesota
*Biomechanical Engineer

Impact – Solves primary vitrification problems.

Feasibility – Uses established procedures.

Innovation— Fastcooling to fastvitrification.

The Hack – Rapidly increase viscosity at a high temperature.

References

- 1.) <u>Insects at Low Temperature</u>, Richard E. Lee Jr., David L. Denlinger, ISBN:978-1-4757-0192-0
- 2.) Vitrification as an approach to cryopreservation. Fahy, Cryobiology. 1984 Aug;21(4):407-26.
- 13.) Viscosity of cryoprotective agents near glass transition: a new device, technique, and data on DMSO, DP6, and VS55, Noday, Exp Mech. 2009 Oct;49(5):663-672.
- 4.) Partial glass formation: A novel mechanism of insect cryoprotection, Wasylyk, Tice & Baust, Cryobiology 10/1988; 25(5):451-458.
- 5.) Glass Transition Temperature of Glucose, Sucrose, and Trehalose: An Experimental and in Silico Study, Simperler et al, J. Phys. Chem. B 2006, 110, 19678-19684

Contributions

- Developed concept of **poly-vitrification**, a process by which a CPA forms polymers at low temperatures. This allows us to use very low amounts of cryoprotectants, and reduce exposure to toxic CPAs.
- Developed **plan** to create a poly-vitrification CPA by using modern chemical methods to rapidly assay potential fructose-sucrose-trehalose analogues, or to adapt fructose itself to our needs.

Approaches to increasing T_g

Available Sugars

- Analyze mixtures of available sugars and derivatives
 - Reduced toxicity
 - Increased Tg

3-o-methylglucose

trehalose

Loading Methods

- Sugar loaded liposomes or micelles
 - Could work for low concentration sugars
- Enzymatically triggered CPA-delivery platform

Evaluation of glass forming mixtures

Effects of structural changes on activity

3-o-methylglucose

Additive	Glass Transition (°C)
Glucose	
PVP*	-20
Sucrose	
Trehalose	
Fructose	
3-o-methylglucose	
DMSO*	-132
Propylene Glycol*	-109
M22	-110
Glycerol*	-114

-25 to -45 range at

^{*}at minimum concentration needed to vitrify, sucrose 86%,