view Alc/alcModulator.c @ 13:92b416b4e027

fixed all problems for 16 bit mono output
author Robert McIntyre <rlm@mit.edu>
date Mon, 31 Oct 2011 07:44:02 -0700
parents f9476ff7637e
children
line wrap: on
line source
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2009 by Chris Robinson.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
13 *
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
19 */
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
26 #include "alMain.h"
27 #include "alFilter.h"
28 #include "alAuxEffectSlot.h"
29 #include "alError.h"
30 #include "alu.h"
33 typedef struct ALmodulatorState {
34 // Must be first in all effects!
35 ALeffectState state;
37 enum {
38 SINUSOID,
39 SAWTOOTH,
40 SQUARE
41 } Waveform;
43 ALuint index;
44 ALuint step;
46 ALfloat Gain[MAXCHANNELS];
48 FILTER iirFilter;
49 ALfloat history[1];
50 } ALmodulatorState;
52 #define WAVEFORM_FRACBITS 16
53 #define WAVEFORM_FRACMASK ((1<<WAVEFORM_FRACBITS)-1)
55 static __inline ALdouble Sin(ALuint index)
56 {
57 return sin(index * (M_PI*2.0 / (1<<WAVEFORM_FRACBITS)));
58 }
60 static __inline ALdouble Saw(ALuint index)
61 {
62 return index*(2.0/(1<<WAVEFORM_FRACBITS)) - 1.0;
63 }
65 static __inline ALdouble Square(ALuint index)
66 {
67 return (index&(1<<(WAVEFORM_FRACBITS-1))) ? -1.0 : 1.0;
68 }
71 static __inline ALfloat hpFilter1P(FILTER *iir, ALuint offset, ALfloat input)
72 {
73 ALfloat *history = &iir->history[offset];
74 ALfloat a = iir->coeff;
75 ALfloat output = input;
77 output = output + (history[0]-output)*a;
78 history[0] = output;
80 return input - output;
81 }
84 #define DECL_TEMPLATE(func) \
85 static void Process##func(ALmodulatorState *state, ALuint SamplesToDo, \
86 const ALfloat *SamplesIn, ALfloat (*SamplesOut)[MAXCHANNELS]) \
87 { \
88 const ALuint step = state->step; \
89 ALuint index = state->index; \
90 ALfloat samp; \
91 ALuint i; \
92 \
93 for(i = 0;i < SamplesToDo;i++) \
94 { \
95 samp = SamplesIn[i]; \
96 \
97 index += step; \
98 index &= WAVEFORM_FRACMASK; \
99 samp *= func(index); \
100 \
101 samp = hpFilter1P(&state->iirFilter, 0, samp); \
102 \
103 SamplesOut[i][FRONT_LEFT] += state->Gain[FRONT_LEFT] * samp; \
104 SamplesOut[i][FRONT_RIGHT] += state->Gain[FRONT_RIGHT] * samp; \
105 SamplesOut[i][FRONT_CENTER] += state->Gain[FRONT_CENTER] * samp; \
106 SamplesOut[i][SIDE_LEFT] += state->Gain[SIDE_LEFT] * samp; \
107 SamplesOut[i][SIDE_RIGHT] += state->Gain[SIDE_RIGHT] * samp; \
108 SamplesOut[i][BACK_LEFT] += state->Gain[BACK_LEFT] * samp; \
109 SamplesOut[i][BACK_RIGHT] += state->Gain[BACK_RIGHT] * samp; \
110 SamplesOut[i][BACK_CENTER] += state->Gain[BACK_CENTER] * samp; \
111 } \
112 state->index = index; \
113 }
115 DECL_TEMPLATE(Sin)
116 DECL_TEMPLATE(Saw)
117 DECL_TEMPLATE(Square)
119 #undef DECL_TEMPLATE
122 static ALvoid ModulatorDestroy(ALeffectState *effect)
123 {
124 ALmodulatorState *state = (ALmodulatorState*)effect;
125 free(state);
126 }
128 static ALboolean ModulatorDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
129 {
130 return AL_TRUE;
131 (void)effect;
132 (void)Device;
133 }
135 static ALvoid ModulatorUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffectslot *Slot)
136 {
137 ALmodulatorState *state = (ALmodulatorState*)effect;
138 ALCdevice *Device = Context->Device;
139 ALfloat gain, cw, a = 0.0f;
140 ALuint index;
142 if(Slot->effect.Params.Modulator.Waveform == AL_RING_MODULATOR_SINUSOID)
143 state->Waveform = SINUSOID;
144 else if(Slot->effect.Params.Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH)
145 state->Waveform = SAWTOOTH;
146 else if(Slot->effect.Params.Modulator.Waveform == AL_RING_MODULATOR_SQUARE)
147 state->Waveform = SQUARE;
149 state->step = Slot->effect.Params.Modulator.Frequency*(1<<WAVEFORM_FRACBITS) /
150 Device->Frequency;
151 if(!state->step)
152 state->step = 1;
154 cw = cos(2.0*M_PI * Slot->effect.Params.Modulator.HighPassCutoff /
155 Device->Frequency);
156 a = (2.0f-cw) - aluSqrt(aluPow(2.0f-cw, 2.0f) - 1.0f);
157 state->iirFilter.coeff = a;
159 gain = Slot->Gain;
160 for(index = 0;index < MAXCHANNELS;index++)
161 state->Gain[index] = 0.0f;
162 for(index = 0;index < Device->NumChan;index++)
163 {
164 enum Channel chan = Device->Speaker2Chan[index];
165 state->Gain[chan] = gain;
166 }
167 }
169 static ALvoid ModulatorProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[MAXCHANNELS])
170 {
171 ALmodulatorState *state = (ALmodulatorState*)effect;
172 (void)Slot;
174 switch(state->Waveform)
175 {
176 case SINUSOID:
177 ProcessSin(state, SamplesToDo, SamplesIn, SamplesOut);
178 break;
180 case SAWTOOTH:
181 ProcessSaw(state, SamplesToDo, SamplesIn, SamplesOut);
182 break;
184 case SQUARE:
185 ProcessSquare(state, SamplesToDo, SamplesIn, SamplesOut);
186 break;
187 }
188 }
190 ALeffectState *ModulatorCreate(void)
191 {
192 ALmodulatorState *state;
194 state = malloc(sizeof(*state));
195 if(!state)
196 return NULL;
198 state->state.Destroy = ModulatorDestroy;
199 state->state.DeviceUpdate = ModulatorDeviceUpdate;
200 state->state.Update = ModulatorUpdate;
201 state->state.Process = ModulatorProcess;
203 state->index = 0.0f;
204 state->step = 1.0f;
206 state->iirFilter.coeff = 0.0f;
207 state->iirFilter.history[0] = 0.0f;
209 return &state->state;
210 }