Mercurial > audio-send
comparison Alc/hrtf.c @ 0:f9476ff7637e
initial forking of open-al to create multiple listeners
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Tue, 25 Oct 2011 13:02:31 -0700 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f9476ff7637e |
---|---|
1 /** | |
2 * OpenAL cross platform audio library | |
3 * Copyright (C) 2011 by Chris Robinson | |
4 * This library is free software; you can redistribute it and/or | |
5 * modify it under the terms of the GNU Library General Public | |
6 * License as published by the Free Software Foundation; either | |
7 * version 2 of the License, or (at your option) any later version. | |
8 * | |
9 * This library is distributed in the hope that it will be useful, | |
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
12 * Library General Public License for more details. | |
13 * | |
14 * You should have received a copy of the GNU Library General Public | |
15 * License along with this library; if not, write to the | |
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
17 * Boston, MA 02111-1307, USA. | |
18 * Or go to http://www.gnu.org/copyleft/lgpl.html | |
19 */ | |
20 | |
21 #include "config.h" | |
22 | |
23 #include "AL/al.h" | |
24 #include "AL/alc.h" | |
25 #include "alMain.h" | |
26 #include "alSource.h" | |
27 | |
28 /* External HRTF file format (LE byte order): | |
29 * | |
30 * ALchar magic[8] = "MinPHR00"; | |
31 * ALuint sampleRate; | |
32 * | |
33 * ALushort hrirCount; // Required value: 828 | |
34 * ALushort hrirSize; // Required value: 32 | |
35 * ALubyte evCount; // Required value: 19 | |
36 * | |
37 * ALushort evOffset[evCount]; // Required values: | |
38 * { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 } | |
39 * | |
40 * ALushort coefficients[hrirCount][hrirSize]; | |
41 * ALubyte delays[hrirCount]; // Element values must not exceed 127 | |
42 */ | |
43 | |
44 static const ALchar magicMarker[8] = "MinPHR00"; | |
45 | |
46 #define HRIR_COUNT 828 | |
47 #define ELEV_COUNT 19 | |
48 | |
49 static const ALushort evOffset[ELEV_COUNT] = { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 }; | |
50 static const ALubyte azCount[ELEV_COUNT] = { 1, 12, 24, 36, 45, 56, 60, 72, 72, 72, 72, 72, 60, 56, 45, 36, 24, 12, 1 }; | |
51 | |
52 static struct Hrtf { | |
53 ALuint sampleRate; | |
54 ALshort coeffs[HRIR_COUNT][HRIR_LENGTH]; | |
55 ALubyte delays[HRIR_COUNT]; | |
56 } Hrtf = { | |
57 44100, | |
58 #include "hrtf_tables.inc" | |
59 }; | |
60 | |
61 // Calculate the elevation indices given the polar elevation in radians. | |
62 // This will return two indices between 0 and (ELEV_COUNT-1) and an | |
63 // interpolation factor between 0.0 and 1.0. | |
64 static void CalcEvIndices(ALfloat ev, ALuint *evidx, ALfloat *evmu) | |
65 { | |
66 ev = (M_PI/2.0f + ev) * (ELEV_COUNT-1) / M_PI; | |
67 evidx[0] = (ALuint)ev; | |
68 evidx[1] = minu(evidx[0] + 1, ELEV_COUNT-1); | |
69 *evmu = ev - evidx[0]; | |
70 } | |
71 | |
72 // Calculate the azimuth indices given the polar azimuth in radians. This | |
73 // will return two indices between 0 and (azCount [ei] - 1) and an | |
74 // interpolation factor between 0.0 and 1.0. | |
75 static void CalcAzIndices(ALuint evidx, ALfloat az, ALuint *azidx, ALfloat *azmu) | |
76 { | |
77 az = (M_PI*2.0f + az) * azCount[evidx] / (M_PI*2.0f); | |
78 azidx[0] = (ALuint)az % azCount[evidx]; | |
79 azidx[1] = (azidx[0] + 1) % azCount[evidx]; | |
80 *azmu = az - floor(az); | |
81 } | |
82 | |
83 // Calculates the normalized HRTF transition factor (delta) from the changes | |
84 // in gain and listener to source angle between updates. The result is a | |
85 // normalized delta factor than can be used to calculate moving HRIR stepping | |
86 // values. | |
87 ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3]) | |
88 { | |
89 ALfloat gainChange, angleChange; | |
90 | |
91 // Calculate the normalized dB gain change. | |
92 newGain = maxf(newGain, 0.0001f); | |
93 oldGain = maxf(oldGain, 0.0001f); | |
94 gainChange = aluFabs(log10(newGain / oldGain) / log10(0.0001f)); | |
95 | |
96 // Calculate the normalized listener to source angle change when there is | |
97 // enough gain to notice it. | |
98 angleChange = 0.0f; | |
99 if(gainChange > 0.0001f || newGain > 0.0001f) | |
100 { | |
101 // No angle change when the directions are equal or degenerate (when | |
102 // both have zero length). | |
103 if(newdir[0]-olddir[0] || newdir[1]-olddir[1] || newdir[2]-olddir[2]) | |
104 angleChange = aluAcos(olddir[0]*newdir[0] + | |
105 olddir[1]*newdir[1] + | |
106 olddir[2]*newdir[2]) / M_PI; | |
107 | |
108 } | |
109 | |
110 // Use the largest of the two changes for the delta factor, and apply a | |
111 // significance shaping function to it. | |
112 return clampf(angleChange*2.0f, gainChange*2.0f, 1.0f); | |
113 } | |
114 | |
115 // Calculates static HRIR coefficients and delays for the given polar | |
116 // elevation and azimuth in radians. Linear interpolation is used to | |
117 // increase the apparent resolution of the HRIR dataset. The coefficients | |
118 // are also normalized and attenuated by the specified gain. | |
119 void GetLerpedHrtfCoeffs(ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays) | |
120 { | |
121 ALuint evidx[2], azidx[2]; | |
122 ALfloat mu[3]; | |
123 ALuint lidx[4], ridx[4]; | |
124 ALuint i; | |
125 | |
126 // Claculate elevation indices and interpolation factor. | |
127 CalcEvIndices(elevation, evidx, &mu[2]); | |
128 | |
129 // Calculate azimuth indices and interpolation factor for the first | |
130 // elevation. | |
131 CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]); | |
132 | |
133 // Calculate the first set of linear HRIR indices for left and right | |
134 // channels. | |
135 lidx[0] = evOffset[evidx[0]] + azidx[0]; | |
136 lidx[1] = evOffset[evidx[0]] + azidx[1]; | |
137 ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]); | |
138 ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]); | |
139 | |
140 // Calculate azimuth indices and interpolation factor for the second | |
141 // elevation. | |
142 CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]); | |
143 | |
144 // Calculate the second set of linear HRIR indices for left and right | |
145 // channels. | |
146 lidx[2] = evOffset[evidx[1]] + azidx[0]; | |
147 lidx[3] = evOffset[evidx[1]] + azidx[1]; | |
148 ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]); | |
149 ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]); | |
150 | |
151 // Calculate the normalized and attenuated HRIR coefficients using linear | |
152 // interpolation when there is enough gain to warrant it. Zero the | |
153 // coefficients if gain is too low. | |
154 if(gain > 0.0001f) | |
155 { | |
156 ALdouble scale = gain * (1.0/32767.0); | |
157 for(i = 0;i < HRIR_LENGTH;i++) | |
158 { | |
159 coeffs[i][0] = lerp(lerp(Hrtf.coeffs[lidx[0]][i], Hrtf.coeffs[lidx[1]][i], mu[0]), | |
160 lerp(Hrtf.coeffs[lidx[2]][i], Hrtf.coeffs[lidx[3]][i], mu[1]), | |
161 mu[2]) * scale; | |
162 coeffs[i][1] = lerp(lerp(Hrtf.coeffs[ridx[0]][i], Hrtf.coeffs[ridx[1]][i], mu[0]), | |
163 lerp(Hrtf.coeffs[ridx[2]][i], Hrtf.coeffs[ridx[3]][i], mu[1]), | |
164 mu[2]) * scale; | |
165 } | |
166 } | |
167 else | |
168 { | |
169 for(i = 0;i < HRIR_LENGTH;i++) | |
170 { | |
171 coeffs[i][0] = 0.0f; | |
172 coeffs[i][1] = 0.0f; | |
173 } | |
174 } | |
175 | |
176 // Calculate the HRIR delays using linear interpolation. | |
177 delays[0] = (ALuint)(lerp(lerp(Hrtf.delays[lidx[0]], Hrtf.delays[lidx[1]], mu[0]), | |
178 lerp(Hrtf.delays[lidx[2]], Hrtf.delays[lidx[3]], mu[1]), | |
179 mu[2]) * 65536.0f); | |
180 delays[1] = (ALuint)(lerp(lerp(Hrtf.delays[ridx[0]], Hrtf.delays[ridx[1]], mu[0]), | |
181 lerp(Hrtf.delays[ridx[2]], Hrtf.delays[ridx[3]], mu[1]), | |
182 mu[2]) * 65536.0f); | |
183 } | |
184 | |
185 // Calculates the moving HRIR target coefficients, target delays, and | |
186 // stepping values for the given polar elevation and azimuth in radians. | |
187 // Linear interpolation is used to increase the apparent resolution of the | |
188 // HRIR dataset. The coefficients are also normalized and attenuated by the | |
189 // specified gain. Stepping resolution and count is determined using the | |
190 // given delta factor between 0.0 and 1.0. | |
191 ALuint GetMovingHrtfCoeffs(ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep) | |
192 { | |
193 ALuint evidx[2], azidx[2]; | |
194 ALuint lidx[4], ridx[4]; | |
195 ALfloat left, right; | |
196 ALfloat mu[3]; | |
197 ALfloat step; | |
198 ALuint i; | |
199 | |
200 // Claculate elevation indices and interpolation factor. | |
201 CalcEvIndices(elevation, evidx, &mu[2]); | |
202 | |
203 // Calculate azimuth indices and interpolation factor for the first | |
204 // elevation. | |
205 CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]); | |
206 | |
207 // Calculate the first set of linear HRIR indices for left and right | |
208 // channels. | |
209 lidx[0] = evOffset[evidx[0]] + azidx[0]; | |
210 lidx[1] = evOffset[evidx[0]] + azidx[1]; | |
211 ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]); | |
212 ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]); | |
213 | |
214 // Calculate azimuth indices and interpolation factor for the second | |
215 // elevation. | |
216 CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]); | |
217 | |
218 // Calculate the second set of linear HRIR indices for left and right | |
219 // channels. | |
220 lidx[2] = evOffset[evidx[1]] + azidx[0]; | |
221 lidx[3] = evOffset[evidx[1]] + azidx[1]; | |
222 ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]); | |
223 ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]); | |
224 | |
225 // Calculate the stepping parameters. | |
226 delta = maxf(floor(delta*(Hrtf.sampleRate*0.015f) + 0.5), 1.0f); | |
227 step = 1.0f / delta; | |
228 | |
229 // Calculate the normalized and attenuated target HRIR coefficients using | |
230 // linear interpolation when there is enough gain to warrant it. Zero | |
231 // the target coefficients if gain is too low. Then calculate the | |
232 // coefficient stepping values using the target and previous running | |
233 // coefficients. | |
234 if(gain > 0.0001f) | |
235 { | |
236 ALdouble scale = gain * (1.0/32767.0); | |
237 for(i = 0;i < HRIR_LENGTH;i++) | |
238 { | |
239 left = coeffs[i][0] - (coeffStep[i][0] * counter); | |
240 right = coeffs[i][1] - (coeffStep[i][1] * counter); | |
241 | |
242 coeffs[i][0] = lerp(lerp(Hrtf.coeffs[lidx[0]][i], Hrtf.coeffs[lidx[1]][i], mu[0]), | |
243 lerp(Hrtf.coeffs[lidx[2]][i], Hrtf.coeffs[lidx[3]][i], mu[1]), | |
244 mu[2]) * scale; | |
245 coeffs[i][1] = lerp(lerp(Hrtf.coeffs[ridx[0]][i], Hrtf.coeffs[ridx[1]][i], mu[0]), | |
246 lerp(Hrtf.coeffs[ridx[2]][i], Hrtf.coeffs[ridx[3]][i], mu[1]), | |
247 mu[2]) * scale; | |
248 | |
249 coeffStep[i][0] = step * (coeffs[i][0] - left); | |
250 coeffStep[i][1] = step * (coeffs[i][1] - right); | |
251 } | |
252 } | |
253 else | |
254 { | |
255 for(i = 0;i < HRIR_LENGTH;i++) | |
256 { | |
257 left = coeffs[i][0] - (coeffStep[i][0] * counter); | |
258 right = coeffs[i][1] - (coeffStep[i][1] * counter); | |
259 | |
260 coeffs[i][0] = 0.0f; | |
261 coeffs[i][1] = 0.0f; | |
262 | |
263 coeffStep[i][0] = step * -left; | |
264 coeffStep[i][1] = step * -right; | |
265 } | |
266 } | |
267 | |
268 // Calculate the HRIR delays using linear interpolation. Then calculate | |
269 // the delay stepping values using the target and previous running | |
270 // delays. | |
271 left = delays[0] - (delayStep[0] * counter); | |
272 right = delays[1] - (delayStep[1] * counter); | |
273 | |
274 delays[0] = (ALuint)(lerp(lerp(Hrtf.delays[lidx[0]], Hrtf.delays[lidx[1]], mu[0]), | |
275 lerp(Hrtf.delays[lidx[2]], Hrtf.delays[lidx[3]], mu[1]), | |
276 mu[2]) * 65536.0f); | |
277 delays[1] = (ALuint)(lerp(lerp(Hrtf.delays[ridx[0]], Hrtf.delays[ridx[1]], mu[0]), | |
278 lerp(Hrtf.delays[ridx[2]], Hrtf.delays[ridx[3]], mu[1]), | |
279 mu[2]) * 65536.0f); | |
280 | |
281 delayStep[0] = (ALint)(step * (delays[0] - left)); | |
282 delayStep[1] = (ALint)(step * (delays[1] - right)); | |
283 | |
284 // The stepping count is the number of samples necessary for the HRIR to | |
285 // complete its transition. The mixer will only apply stepping for this | |
286 // many samples. | |
287 return (ALuint)delta; | |
288 } | |
289 | |
290 ALCboolean IsHrtfCompatible(ALCdevice *device) | |
291 { | |
292 if(device->FmtChans == DevFmtStereo && device->Frequency == Hrtf.sampleRate) | |
293 return ALC_TRUE; | |
294 ERR("Incompatible HRTF format: %s %uhz (%s %uhz needed)\n", | |
295 DevFmtChannelsString(device->FmtChans), device->Frequency, | |
296 DevFmtChannelsString(DevFmtStereo), Hrtf.sampleRate); | |
297 return ALC_FALSE; | |
298 } | |
299 | |
300 void InitHrtf(void) | |
301 { | |
302 const char *fname; | |
303 FILE *f = NULL; | |
304 | |
305 fname = GetConfigValue(NULL, "hrtf_tables", ""); | |
306 if(fname[0] != '\0') | |
307 { | |
308 f = fopen(fname, "rb"); | |
309 if(f == NULL) | |
310 ERR("Could not open %s\n", fname); | |
311 } | |
312 if(f != NULL) | |
313 { | |
314 const ALubyte maxDelay = SRC_HISTORY_LENGTH-1; | |
315 ALboolean failed = AL_FALSE; | |
316 struct Hrtf newdata; | |
317 ALchar magic[9]; | |
318 ALsizei i, j; | |
319 | |
320 if(fread(magic, 1, sizeof(magicMarker), f) != sizeof(magicMarker)) | |
321 { | |
322 ERR("Failed to read magic marker\n"); | |
323 failed = AL_TRUE; | |
324 } | |
325 else if(memcmp(magic, magicMarker, sizeof(magicMarker)) != 0) | |
326 { | |
327 magic[8] = 0; | |
328 ERR("Invalid magic marker: \"%s\"\n", magic); | |
329 failed = AL_TRUE; | |
330 } | |
331 | |
332 if(!failed) | |
333 { | |
334 ALushort hrirCount, hrirSize; | |
335 ALubyte evCount; | |
336 | |
337 newdata.sampleRate = fgetc(f); | |
338 newdata.sampleRate |= fgetc(f)<<8; | |
339 newdata.sampleRate |= fgetc(f)<<16; | |
340 newdata.sampleRate |= fgetc(f)<<24; | |
341 | |
342 hrirCount = fgetc(f); | |
343 hrirCount |= fgetc(f)<<8; | |
344 | |
345 hrirSize = fgetc(f); | |
346 hrirSize |= fgetc(f)<<8; | |
347 | |
348 evCount = fgetc(f); | |
349 | |
350 if(hrirCount != HRIR_COUNT || hrirSize != HRIR_LENGTH || evCount != ELEV_COUNT) | |
351 { | |
352 ERR("Unsupported value: hrirCount=%d (%d), hrirSize=%d (%d), evCount=%d (%d)\n", | |
353 hrirCount, HRIR_COUNT, hrirSize, HRIR_LENGTH, evCount, ELEV_COUNT); | |
354 failed = AL_TRUE; | |
355 } | |
356 } | |
357 | |
358 if(!failed) | |
359 { | |
360 for(i = 0;i < HRIR_COUNT;i++) | |
361 { | |
362 ALushort offset; | |
363 offset = fgetc(f); | |
364 offset |= fgetc(f)<<8; | |
365 if(offset != evOffset[i]) | |
366 { | |
367 ERR("Unsupported evOffset[%d] value: %d (%d)\n", i, offset, evOffset[i]); | |
368 failed = AL_TRUE; | |
369 } | |
370 } | |
371 } | |
372 | |
373 if(!failed) | |
374 { | |
375 for(i = 0;i < HRIR_COUNT;i++) | |
376 { | |
377 for(j = 0;j < HRIR_LENGTH;j++) | |
378 { | |
379 ALshort coeff; | |
380 coeff = fgetc(f); | |
381 coeff |= fgetc(f)<<8; | |
382 newdata.coeffs[i][j] = coeff; | |
383 } | |
384 } | |
385 for(i = 0;i < HRIR_COUNT;i++) | |
386 { | |
387 ALubyte delay; | |
388 delay = fgetc(f); | |
389 newdata.delays[i] = delay; | |
390 if(delay > maxDelay) | |
391 { | |
392 ERR("Invalid delay[%d]: %d (%d)\n", i, delay, maxDelay); | |
393 failed = AL_TRUE; | |
394 } | |
395 } | |
396 | |
397 if(feof(f)) | |
398 { | |
399 ERR("Premature end of data\n"); | |
400 failed = AL_TRUE; | |
401 } | |
402 } | |
403 | |
404 fclose(f); | |
405 f = NULL; | |
406 | |
407 if(!failed) | |
408 Hrtf = newdata; | |
409 else | |
410 ERR("Failed to load %s\n", fname); | |
411 } | |
412 } |