Mercurial > audio-send
comparison Alc/alcReverb.c @ 0:f9476ff7637e
initial forking of open-al to create multiple listeners
author | Robert McIntyre <rlm@mit.edu> |
---|---|
date | Tue, 25 Oct 2011 13:02:31 -0700 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f9476ff7637e |
---|---|
1 /** | |
2 * Reverb for the OpenAL cross platform audio library | |
3 * Copyright (C) 2008-2009 by Christopher Fitzgerald. | |
4 * This library is free software; you can redistribute it and/or | |
5 * modify it under the terms of the GNU Library General Public | |
6 * License as published by the Free Software Foundation; either | |
7 * version 2 of the License, or (at your option) any later version. | |
8 * | |
9 * This library is distributed in the hope that it will be useful, | |
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
12 * Library General Public License for more details. | |
13 * | |
14 * You should have received a copy of the GNU Library General Public | |
15 * License along with this library; if not, write to the | |
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
17 * Boston, MA 02111-1307, USA. | |
18 * Or go to http://www.gnu.org/copyleft/lgpl.html | |
19 */ | |
20 | |
21 #include "config.h" | |
22 | |
23 #include <stdio.h> | |
24 #include <stdlib.h> | |
25 #include <math.h> | |
26 | |
27 #include "AL/al.h" | |
28 #include "AL/alc.h" | |
29 #include "alMain.h" | |
30 #include "alAuxEffectSlot.h" | |
31 #include "alEffect.h" | |
32 #include "alError.h" | |
33 #include "alu.h" | |
34 | |
35 typedef struct DelayLine | |
36 { | |
37 // The delay lines use sample lengths that are powers of 2 to allow the | |
38 // use of bit-masking instead of a modulus for wrapping. | |
39 ALuint Mask; | |
40 ALfloat *Line; | |
41 } DelayLine; | |
42 | |
43 typedef struct ALverbState { | |
44 // Must be first in all effects! | |
45 ALeffectState state; | |
46 | |
47 // All delay lines are allocated as a single buffer to reduce memory | |
48 // fragmentation and management code. | |
49 ALfloat *SampleBuffer; | |
50 ALuint TotalSamples; | |
51 // Master effect low-pass filter (2 chained 1-pole filters). | |
52 FILTER LpFilter; | |
53 ALfloat LpHistory[2]; | |
54 struct { | |
55 // Modulator delay line. | |
56 DelayLine Delay; | |
57 // The vibrato time is tracked with an index over a modulus-wrapped | |
58 // range (in samples). | |
59 ALuint Index; | |
60 ALuint Range; | |
61 // The depth of frequency change (also in samples) and its filter. | |
62 ALfloat Depth; | |
63 ALfloat Coeff; | |
64 ALfloat Filter; | |
65 } Mod; | |
66 // Initial effect delay. | |
67 DelayLine Delay; | |
68 // The tap points for the initial delay. First tap goes to early | |
69 // reflections, the last to late reverb. | |
70 ALuint DelayTap[2]; | |
71 struct { | |
72 // Output gain for early reflections. | |
73 ALfloat Gain; | |
74 // Early reflections are done with 4 delay lines. | |
75 ALfloat Coeff[4]; | |
76 DelayLine Delay[4]; | |
77 ALuint Offset[4]; | |
78 // The gain for each output channel based on 3D panning (only for the | |
79 // EAX path). | |
80 ALfloat PanGain[MAXCHANNELS]; | |
81 } Early; | |
82 // Decorrelator delay line. | |
83 DelayLine Decorrelator; | |
84 // There are actually 4 decorrelator taps, but the first occurs at the | |
85 // initial sample. | |
86 ALuint DecoTap[3]; | |
87 struct { | |
88 // Output gain for late reverb. | |
89 ALfloat Gain; | |
90 // Attenuation to compensate for the modal density and decay rate of | |
91 // the late lines. | |
92 ALfloat DensityGain; | |
93 // The feed-back and feed-forward all-pass coefficient. | |
94 ALfloat ApFeedCoeff; | |
95 // Mixing matrix coefficient. | |
96 ALfloat MixCoeff; | |
97 // Late reverb has 4 parallel all-pass filters. | |
98 ALfloat ApCoeff[4]; | |
99 DelayLine ApDelay[4]; | |
100 ALuint ApOffset[4]; | |
101 // In addition to 4 cyclical delay lines. | |
102 ALfloat Coeff[4]; | |
103 DelayLine Delay[4]; | |
104 ALuint Offset[4]; | |
105 // The cyclical delay lines are 1-pole low-pass filtered. | |
106 ALfloat LpCoeff[4]; | |
107 ALfloat LpSample[4]; | |
108 // The gain for each output channel based on 3D panning (only for the | |
109 // EAX path). | |
110 ALfloat PanGain[MAXCHANNELS]; | |
111 } Late; | |
112 struct { | |
113 // Attenuation to compensate for the modal density and decay rate of | |
114 // the echo line. | |
115 ALfloat DensityGain; | |
116 // Echo delay and all-pass lines. | |
117 DelayLine Delay; | |
118 DelayLine ApDelay; | |
119 ALfloat Coeff; | |
120 ALfloat ApFeedCoeff; | |
121 ALfloat ApCoeff; | |
122 ALuint Offset; | |
123 ALuint ApOffset; | |
124 // The echo line is 1-pole low-pass filtered. | |
125 ALfloat LpCoeff; | |
126 ALfloat LpSample; | |
127 // Echo mixing coefficients. | |
128 ALfloat MixCoeff[2]; | |
129 } Echo; | |
130 // The current read offset for all delay lines. | |
131 ALuint Offset; | |
132 | |
133 // The gain for each output channel (non-EAX path only; aliased from | |
134 // Late.PanGain) | |
135 ALfloat *Gain; | |
136 } ALverbState; | |
137 | |
138 /* This is a user config option for modifying the overall output of the reverb | |
139 * effect. | |
140 */ | |
141 ALfloat ReverbBoost = 1.0f; | |
142 | |
143 /* Specifies whether to use a standard reverb effect in place of EAX reverb */ | |
144 ALboolean EmulateEAXReverb = AL_FALSE; | |
145 | |
146 /* This coefficient is used to define the maximum frequency range controlled | |
147 * by the modulation depth. The current value of 0.1 will allow it to swing | |
148 * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the | |
149 * sampler to stall on the downswing, and above 1 it will cause it to sample | |
150 * backwards. | |
151 */ | |
152 static const ALfloat MODULATION_DEPTH_COEFF = 0.1f; | |
153 | |
154 /* A filter is used to avoid the terrible distortion caused by changing | |
155 * modulation time and/or depth. To be consistent across different sample | |
156 * rates, the coefficient must be raised to a constant divided by the sample | |
157 * rate: coeff^(constant / rate). | |
158 */ | |
159 static const ALfloat MODULATION_FILTER_COEFF = 0.048f; | |
160 static const ALfloat MODULATION_FILTER_CONST = 100000.0f; | |
161 | |
162 // When diffusion is above 0, an all-pass filter is used to take the edge off | |
163 // the echo effect. It uses the following line length (in seconds). | |
164 static const ALfloat ECHO_ALLPASS_LENGTH = 0.0133f; | |
165 | |
166 // Input into the late reverb is decorrelated between four channels. Their | |
167 // timings are dependent on a fraction and multiplier. See the | |
168 // UpdateDecorrelator() routine for the calculations involved. | |
169 static const ALfloat DECO_FRACTION = 0.15f; | |
170 static const ALfloat DECO_MULTIPLIER = 2.0f; | |
171 | |
172 // All delay line lengths are specified in seconds. | |
173 | |
174 // The lengths of the early delay lines. | |
175 static const ALfloat EARLY_LINE_LENGTH[4] = | |
176 { | |
177 0.0015f, 0.0045f, 0.0135f, 0.0405f | |
178 }; | |
179 | |
180 // The lengths of the late all-pass delay lines. | |
181 static const ALfloat ALLPASS_LINE_LENGTH[4] = | |
182 { | |
183 0.0151f, 0.0167f, 0.0183f, 0.0200f, | |
184 }; | |
185 | |
186 // The lengths of the late cyclical delay lines. | |
187 static const ALfloat LATE_LINE_LENGTH[4] = | |
188 { | |
189 0.0211f, 0.0311f, 0.0461f, 0.0680f | |
190 }; | |
191 | |
192 // The late cyclical delay lines have a variable length dependent on the | |
193 // effect's density parameter (inverted for some reason) and this multiplier. | |
194 static const ALfloat LATE_LINE_MULTIPLIER = 4.0f; | |
195 | |
196 // Calculate the length of a delay line and store its mask and offset. | |
197 static ALuint CalcLineLength(ALfloat length, ALintptrEXT offset, ALuint frequency, DelayLine *Delay) | |
198 { | |
199 ALuint samples; | |
200 | |
201 // All line lengths are powers of 2, calculated from their lengths, with | |
202 // an additional sample in case of rounding errors. | |
203 samples = NextPowerOf2((ALuint)(length * frequency) + 1); | |
204 // All lines share a single sample buffer. | |
205 Delay->Mask = samples - 1; | |
206 Delay->Line = (ALfloat*)offset; | |
207 // Return the sample count for accumulation. | |
208 return samples; | |
209 } | |
210 | |
211 // Given the allocated sample buffer, this function updates each delay line | |
212 // offset. | |
213 static __inline ALvoid RealizeLineOffset(ALfloat * sampleBuffer, DelayLine *Delay) | |
214 { | |
215 Delay->Line = &sampleBuffer[(ALintptrEXT)Delay->Line]; | |
216 } | |
217 | |
218 /* Calculates the delay line metrics and allocates the shared sample buffer | |
219 * for all lines given a flag indicating whether or not to allocate the EAX- | |
220 * related delays (eaxFlag) and the sample rate (frequency). If an | |
221 * allocation failure occurs, it returns AL_FALSE. | |
222 */ | |
223 static ALboolean AllocLines(ALboolean eaxFlag, ALuint frequency, ALverbState *State) | |
224 { | |
225 ALuint totalSamples, index; | |
226 ALfloat length; | |
227 ALfloat *newBuffer = NULL; | |
228 | |
229 // All delay line lengths are calculated to accomodate the full range of | |
230 // lengths given their respective paramters. | |
231 totalSamples = 0; | |
232 if(eaxFlag) | |
233 { | |
234 /* The modulator's line length is calculated from the maximum | |
235 * modulation time and depth coefficient, and halfed for the low-to- | |
236 * high frequency swing. An additional sample is added to keep it | |
237 * stable when there is no modulation. | |
238 */ | |
239 length = (AL_EAXREVERB_MAX_MODULATION_TIME * MODULATION_DEPTH_COEFF / | |
240 2.0f) + (1.0f / frequency); | |
241 totalSamples += CalcLineLength(length, totalSamples, frequency, | |
242 &State->Mod.Delay); | |
243 } | |
244 | |
245 // The initial delay is the sum of the reflections and late reverb | |
246 // delays. | |
247 if(eaxFlag) | |
248 length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY + | |
249 AL_EAXREVERB_MAX_LATE_REVERB_DELAY; | |
250 else | |
251 length = AL_REVERB_MAX_REFLECTIONS_DELAY + | |
252 AL_REVERB_MAX_LATE_REVERB_DELAY; | |
253 totalSamples += CalcLineLength(length, totalSamples, frequency, | |
254 &State->Delay); | |
255 | |
256 // The early reflection lines. | |
257 for(index = 0;index < 4;index++) | |
258 totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples, | |
259 frequency, &State->Early.Delay[index]); | |
260 | |
261 // The decorrelator line is calculated from the lowest reverb density (a | |
262 // parameter value of 1). | |
263 length = (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) * | |
264 LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER); | |
265 totalSamples += CalcLineLength(length, totalSamples, frequency, | |
266 &State->Decorrelator); | |
267 | |
268 // The late all-pass lines. | |
269 for(index = 0;index < 4;index++) | |
270 totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples, | |
271 frequency, &State->Late.ApDelay[index]); | |
272 | |
273 // The late delay lines are calculated from the lowest reverb density. | |
274 for(index = 0;index < 4;index++) | |
275 { | |
276 length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER); | |
277 totalSamples += CalcLineLength(length, totalSamples, frequency, | |
278 &State->Late.Delay[index]); | |
279 } | |
280 | |
281 if(eaxFlag) | |
282 { | |
283 // The echo all-pass and delay lines. | |
284 totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples, | |
285 frequency, &State->Echo.ApDelay); | |
286 totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples, | |
287 frequency, &State->Echo.Delay); | |
288 } | |
289 | |
290 if(totalSamples != State->TotalSamples) | |
291 { | |
292 newBuffer = realloc(State->SampleBuffer, sizeof(ALfloat) * totalSamples); | |
293 if(newBuffer == NULL) | |
294 return AL_FALSE; | |
295 State->SampleBuffer = newBuffer; | |
296 State->TotalSamples = totalSamples; | |
297 } | |
298 | |
299 // Update all delays to reflect the new sample buffer. | |
300 RealizeLineOffset(State->SampleBuffer, &State->Delay); | |
301 RealizeLineOffset(State->SampleBuffer, &State->Decorrelator); | |
302 for(index = 0;index < 4;index++) | |
303 { | |
304 RealizeLineOffset(State->SampleBuffer, &State->Early.Delay[index]); | |
305 RealizeLineOffset(State->SampleBuffer, &State->Late.ApDelay[index]); | |
306 RealizeLineOffset(State->SampleBuffer, &State->Late.Delay[index]); | |
307 } | |
308 if(eaxFlag) | |
309 { | |
310 RealizeLineOffset(State->SampleBuffer, &State->Mod.Delay); | |
311 RealizeLineOffset(State->SampleBuffer, &State->Echo.ApDelay); | |
312 RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay); | |
313 } | |
314 | |
315 // Clear the sample buffer. | |
316 for(index = 0;index < State->TotalSamples;index++) | |
317 State->SampleBuffer[index] = 0.0f; | |
318 | |
319 return AL_TRUE; | |
320 } | |
321 | |
322 // Calculate a decay coefficient given the length of each cycle and the time | |
323 // until the decay reaches -60 dB. | |
324 static __inline ALfloat CalcDecayCoeff(ALfloat length, ALfloat decayTime) | |
325 { | |
326 return aluPow(0.001f/*-60 dB*/, length/decayTime); | |
327 } | |
328 | |
329 // Calculate a decay length from a coefficient and the time until the decay | |
330 // reaches -60 dB. | |
331 static __inline ALfloat CalcDecayLength(ALfloat coeff, ALfloat decayTime) | |
332 { | |
333 return log10(coeff) * decayTime / -3.0f/*log10(0.001)*/; | |
334 } | |
335 | |
336 // Calculate the high frequency parameter for the I3DL2 coefficient | |
337 // calculation. | |
338 static __inline ALfloat CalcI3DL2HFreq(ALfloat hfRef, ALuint frequency) | |
339 { | |
340 return cos(2.0f * M_PI * hfRef / frequency); | |
341 } | |
342 | |
343 // Calculate an attenuation to be applied to the input of any echo models to | |
344 // compensate for modal density and decay time. | |
345 static __inline ALfloat CalcDensityGain(ALfloat a) | |
346 { | |
347 /* The energy of a signal can be obtained by finding the area under the | |
348 * squared signal. This takes the form of Sum(x_n^2), where x is the | |
349 * amplitude for the sample n. | |
350 * | |
351 * Decaying feedback matches exponential decay of the form Sum(a^n), | |
352 * where a is the attenuation coefficient, and n is the sample. The area | |
353 * under this decay curve can be calculated as: 1 / (1 - a). | |
354 * | |
355 * Modifying the above equation to find the squared area under the curve | |
356 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be | |
357 * calculated by inverting the square root of this approximation, | |
358 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2). | |
359 */ | |
360 return aluSqrt(1.0f - (a * a)); | |
361 } | |
362 | |
363 // Calculate the mixing matrix coefficients given a diffusion factor. | |
364 static __inline ALvoid CalcMatrixCoeffs(ALfloat diffusion, ALfloat *x, ALfloat *y) | |
365 { | |
366 ALfloat n, t; | |
367 | |
368 // The matrix is of order 4, so n is sqrt (4 - 1). | |
369 n = aluSqrt(3.0f); | |
370 t = diffusion * atan(n); | |
371 | |
372 // Calculate the first mixing matrix coefficient. | |
373 *x = cos(t); | |
374 // Calculate the second mixing matrix coefficient. | |
375 *y = sin(t) / n; | |
376 } | |
377 | |
378 // Calculate the limited HF ratio for use with the late reverb low-pass | |
379 // filters. | |
380 static ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF, ALfloat decayTime) | |
381 { | |
382 ALfloat limitRatio; | |
383 | |
384 /* Find the attenuation due to air absorption in dB (converting delay | |
385 * time to meters using the speed of sound). Then reversing the decay | |
386 * equation, solve for HF ratio. The delay length is cancelled out of | |
387 * the equation, so it can be calculated once for all lines. | |
388 */ | |
389 limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * | |
390 SPEEDOFSOUNDMETRESPERSEC); | |
391 /* Using the limit calculated above, apply the upper bound to the HF | |
392 * ratio. Also need to limit the result to a minimum of 0.1, just like the | |
393 * HF ratio parameter. */ | |
394 return clampf(limitRatio, 0.1f, hfRatio); | |
395 } | |
396 | |
397 // Calculate the coefficient for a HF (and eventually LF) decay damping | |
398 // filter. | |
399 static __inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloat decayTime, ALfloat decayCoeff, ALfloat cw) | |
400 { | |
401 ALfloat coeff, g; | |
402 | |
403 // Eventually this should boost the high frequencies when the ratio | |
404 // exceeds 1. | |
405 coeff = 0.0f; | |
406 if (hfRatio < 1.0f) | |
407 { | |
408 // Calculate the low-pass coefficient by dividing the HF decay | |
409 // coefficient by the full decay coefficient. | |
410 g = CalcDecayCoeff(length, decayTime * hfRatio) / decayCoeff; | |
411 | |
412 // Damping is done with a 1-pole filter, so g needs to be squared. | |
413 g *= g; | |
414 coeff = lpCoeffCalc(g, cw); | |
415 | |
416 // Very low decay times will produce minimal output, so apply an | |
417 // upper bound to the coefficient. | |
418 coeff = minf(coeff, 0.98f); | |
419 } | |
420 return coeff; | |
421 } | |
422 | |
423 // Update the EAX modulation index, range, and depth. Keep in mind that this | |
424 // kind of vibrato is additive and not multiplicative as one may expect. The | |
425 // downswing will sound stronger than the upswing. | |
426 static ALvoid UpdateModulator(ALfloat modTime, ALfloat modDepth, ALuint frequency, ALverbState *State) | |
427 { | |
428 ALfloat length; | |
429 | |
430 /* Modulation is calculated in two parts. | |
431 * | |
432 * The modulation time effects the sinus applied to the change in | |
433 * frequency. An index out of the current time range (both in samples) | |
434 * is incremented each sample. The range is bound to a reasonable | |
435 * minimum (1 sample) and when the timing changes, the index is rescaled | |
436 * to the new range (to keep the sinus consistent). | |
437 */ | |
438 length = modTime * frequency; | |
439 if (length >= 1.0f) { | |
440 State->Mod.Index = (ALuint)(State->Mod.Index * length / | |
441 State->Mod.Range); | |
442 State->Mod.Range = (ALuint)length; | |
443 } else { | |
444 State->Mod.Index = 0; | |
445 State->Mod.Range = 1; | |
446 } | |
447 | |
448 /* The modulation depth effects the amount of frequency change over the | |
449 * range of the sinus. It needs to be scaled by the modulation time so | |
450 * that a given depth produces a consistent change in frequency over all | |
451 * ranges of time. Since the depth is applied to a sinus value, it needs | |
452 * to be halfed once for the sinus range and again for the sinus swing | |
453 * in time (half of it is spent decreasing the frequency, half is spent | |
454 * increasing it). | |
455 */ | |
456 State->Mod.Depth = modDepth * MODULATION_DEPTH_COEFF * modTime / 2.0f / | |
457 2.0f * frequency; | |
458 } | |
459 | |
460 // Update the offsets for the initial effect delay line. | |
461 static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALuint frequency, ALverbState *State) | |
462 { | |
463 // Calculate the initial delay taps. | |
464 State->DelayTap[0] = (ALuint)(earlyDelay * frequency); | |
465 State->DelayTap[1] = (ALuint)((earlyDelay + lateDelay) * frequency); | |
466 } | |
467 | |
468 // Update the early reflections gain and line coefficients. | |
469 static ALvoid UpdateEarlyLines(ALfloat reverbGain, ALfloat earlyGain, ALfloat lateDelay, ALverbState *State) | |
470 { | |
471 ALuint index; | |
472 | |
473 // Calculate the early reflections gain (from the master effect gain, and | |
474 // reflections gain parameters) with a constant attenuation of 0.5. | |
475 State->Early.Gain = 0.5f * reverbGain * earlyGain; | |
476 | |
477 // Calculate the gain (coefficient) for each early delay line using the | |
478 // late delay time. This expands the early reflections to the start of | |
479 // the late reverb. | |
480 for(index = 0;index < 4;index++) | |
481 State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index], | |
482 lateDelay); | |
483 } | |
484 | |
485 // Update the offsets for the decorrelator line. | |
486 static ALvoid UpdateDecorrelator(ALfloat density, ALuint frequency, ALverbState *State) | |
487 { | |
488 ALuint index; | |
489 ALfloat length; | |
490 | |
491 /* The late reverb inputs are decorrelated to smooth the reverb tail and | |
492 * reduce harsh echos. The first tap occurs immediately, while the | |
493 * remaining taps are delayed by multiples of a fraction of the smallest | |
494 * cyclical delay time. | |
495 * | |
496 * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay | |
497 */ | |
498 for(index = 0;index < 3;index++) | |
499 { | |
500 length = (DECO_FRACTION * aluPow(DECO_MULTIPLIER, (ALfloat)index)) * | |
501 LATE_LINE_LENGTH[0] * (1.0f + (density * LATE_LINE_MULTIPLIER)); | |
502 State->DecoTap[index] = (ALuint)(length * frequency); | |
503 } | |
504 } | |
505 | |
506 // Update the late reverb gains, line lengths, and line coefficients. | |
507 static ALvoid UpdateLateLines(ALfloat reverbGain, ALfloat lateGain, ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALverbState *State) | |
508 { | |
509 ALfloat length; | |
510 ALuint index; | |
511 | |
512 /* Calculate the late reverb gain (from the master effect gain, and late | |
513 * reverb gain parameters). Since the output is tapped prior to the | |
514 * application of the next delay line coefficients, this gain needs to be | |
515 * attenuated by the 'x' mixing matrix coefficient as well. | |
516 */ | |
517 State->Late.Gain = reverbGain * lateGain * xMix; | |
518 | |
519 /* To compensate for changes in modal density and decay time of the late | |
520 * reverb signal, the input is attenuated based on the maximal energy of | |
521 * the outgoing signal. This approximation is used to keep the apparent | |
522 * energy of the signal equal for all ranges of density and decay time. | |
523 * | |
524 * The average length of the cyclcical delay lines is used to calculate | |
525 * the attenuation coefficient. | |
526 */ | |
527 length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] + | |
528 LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f; | |
529 length *= 1.0f + (density * LATE_LINE_MULTIPLIER); | |
530 State->Late.DensityGain = CalcDensityGain(CalcDecayCoeff(length, | |
531 decayTime)); | |
532 | |
533 // Calculate the all-pass feed-back and feed-forward coefficient. | |
534 State->Late.ApFeedCoeff = 0.5f * aluPow(diffusion, 2.0f); | |
535 | |
536 for(index = 0;index < 4;index++) | |
537 { | |
538 // Calculate the gain (coefficient) for each all-pass line. | |
539 State->Late.ApCoeff[index] = CalcDecayCoeff(ALLPASS_LINE_LENGTH[index], | |
540 decayTime); | |
541 | |
542 // Calculate the length (in seconds) of each cyclical delay line. | |
543 length = LATE_LINE_LENGTH[index] * (1.0f + (density * | |
544 LATE_LINE_MULTIPLIER)); | |
545 | |
546 // Calculate the delay offset for each cyclical delay line. | |
547 State->Late.Offset[index] = (ALuint)(length * frequency); | |
548 | |
549 // Calculate the gain (coefficient) for each cyclical line. | |
550 State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime); | |
551 | |
552 // Calculate the damping coefficient for each low-pass filter. | |
553 State->Late.LpCoeff[index] = | |
554 CalcDampingCoeff(hfRatio, length, decayTime, | |
555 State->Late.Coeff[index], cw); | |
556 | |
557 // Attenuate the cyclical line coefficients by the mixing coefficient | |
558 // (x). | |
559 State->Late.Coeff[index] *= xMix; | |
560 } | |
561 } | |
562 | |
563 // Update the echo gain, line offset, line coefficients, and mixing | |
564 // coefficients. | |
565 static ALvoid UpdateEchoLine(ALfloat reverbGain, ALfloat lateGain, ALfloat echoTime, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALverbState *State) | |
566 { | |
567 // Update the offset and coefficient for the echo delay line. | |
568 State->Echo.Offset = (ALuint)(echoTime * frequency); | |
569 | |
570 // Calculate the decay coefficient for the echo line. | |
571 State->Echo.Coeff = CalcDecayCoeff(echoTime, decayTime); | |
572 | |
573 // Calculate the energy-based attenuation coefficient for the echo delay | |
574 // line. | |
575 State->Echo.DensityGain = CalcDensityGain(State->Echo.Coeff); | |
576 | |
577 // Calculate the echo all-pass feed coefficient. | |
578 State->Echo.ApFeedCoeff = 0.5f * aluPow(diffusion, 2.0f); | |
579 | |
580 // Calculate the echo all-pass attenuation coefficient. | |
581 State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime); | |
582 | |
583 // Calculate the damping coefficient for each low-pass filter. | |
584 State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime, | |
585 State->Echo.Coeff, cw); | |
586 | |
587 /* Calculate the echo mixing coefficients. The first is applied to the | |
588 * echo itself. The second is used to attenuate the late reverb when | |
589 * echo depth is high and diffusion is low, so the echo is slightly | |
590 * stronger than the decorrelated echos in the reverb tail. | |
591 */ | |
592 State->Echo.MixCoeff[0] = reverbGain * lateGain * echoDepth; | |
593 State->Echo.MixCoeff[1] = 1.0f - (echoDepth * 0.5f * (1.0f - diffusion)); | |
594 } | |
595 | |
596 // Update the early and late 3D panning gains. | |
597 static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALverbState *State) | |
598 { | |
599 ALfloat earlyPan[3] = { ReflectionsPan[0], ReflectionsPan[1], | |
600 ReflectionsPan[2] }; | |
601 ALfloat latePan[3] = { LateReverbPan[0], LateReverbPan[1], | |
602 LateReverbPan[2] }; | |
603 const ALfloat *speakerGain; | |
604 ALfloat ambientGain; | |
605 ALfloat dirGain; | |
606 ALfloat length; | |
607 ALuint index; | |
608 ALint pos; | |
609 | |
610 Gain *= ReverbBoost; | |
611 | |
612 // Attenuate non-directional reverb according to the number of channels | |
613 ambientGain = aluSqrt(2.0f/Device->NumChan); | |
614 | |
615 // Calculate the 3D-panning gains for the early reflections and late | |
616 // reverb. | |
617 length = earlyPan[0]*earlyPan[0] + earlyPan[1]*earlyPan[1] + earlyPan[2]*earlyPan[2]; | |
618 if(length > 1.0f) | |
619 { | |
620 length = 1.0f / aluSqrt(length); | |
621 earlyPan[0] *= length; | |
622 earlyPan[1] *= length; | |
623 earlyPan[2] *= length; | |
624 } | |
625 length = latePan[0]*latePan[0] + latePan[1]*latePan[1] + latePan[2]*latePan[2]; | |
626 if(length > 1.0f) | |
627 { | |
628 length = 1.0f / aluSqrt(length); | |
629 latePan[0] *= length; | |
630 latePan[1] *= length; | |
631 latePan[2] *= length; | |
632 } | |
633 | |
634 /* This code applies directional reverb just like the mixer applies | |
635 * directional sources. It diffuses the sound toward all speakers as the | |
636 * magnitude of the panning vector drops, which is only a rough | |
637 * approximation of the expansion of sound across the speakers from the | |
638 * panning direction. | |
639 */ | |
640 pos = aluCart2LUTpos(earlyPan[2], earlyPan[0]); | |
641 speakerGain = Device->PanningLUT[pos]; | |
642 dirGain = aluSqrt((earlyPan[0] * earlyPan[0]) + (earlyPan[2] * earlyPan[2])); | |
643 | |
644 for(index = 0;index < MAXCHANNELS;index++) | |
645 State->Early.PanGain[index] = 0.0f; | |
646 for(index = 0;index < Device->NumChan;index++) | |
647 { | |
648 enum Channel chan = Device->Speaker2Chan[index]; | |
649 State->Early.PanGain[chan] = lerp(ambientGain, speakerGain[chan], dirGain) * Gain; | |
650 } | |
651 | |
652 | |
653 pos = aluCart2LUTpos(latePan[2], latePan[0]); | |
654 speakerGain = Device->PanningLUT[pos]; | |
655 dirGain = aluSqrt((latePan[0] * latePan[0]) + (latePan[2] * latePan[2])); | |
656 | |
657 for(index = 0;index < MAXCHANNELS;index++) | |
658 State->Late.PanGain[index] = 0.0f; | |
659 for(index = 0;index < Device->NumChan;index++) | |
660 { | |
661 enum Channel chan = Device->Speaker2Chan[index]; | |
662 State->Late.PanGain[chan] = lerp(ambientGain, speakerGain[chan], dirGain) * Gain; | |
663 } | |
664 } | |
665 | |
666 // Basic delay line input/output routines. | |
667 static __inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset) | |
668 { | |
669 return Delay->Line[offset&Delay->Mask]; | |
670 } | |
671 | |
672 static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in) | |
673 { | |
674 Delay->Line[offset&Delay->Mask] = in; | |
675 } | |
676 | |
677 // Attenuated delay line output routine. | |
678 static __inline ALfloat AttenuatedDelayLineOut(DelayLine *Delay, ALuint offset, ALfloat coeff) | |
679 { | |
680 return coeff * Delay->Line[offset&Delay->Mask]; | |
681 } | |
682 | |
683 // Basic attenuated all-pass input/output routine. | |
684 static __inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff) | |
685 { | |
686 ALfloat out, feed; | |
687 | |
688 out = DelayLineOut(Delay, outOffset); | |
689 feed = feedCoeff * in; | |
690 DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in); | |
691 | |
692 // The time-based attenuation is only applied to the delay output to | |
693 // keep it from affecting the feed-back path (which is already controlled | |
694 // by the all-pass feed coefficient). | |
695 return (coeff * out) - feed; | |
696 } | |
697 | |
698 // Given an input sample, this function produces modulation for the late | |
699 // reverb. | |
700 static __inline ALfloat EAXModulation(ALverbState *State, ALfloat in) | |
701 { | |
702 ALfloat sinus, frac; | |
703 ALuint offset; | |
704 ALfloat out0, out1; | |
705 | |
706 // Calculate the sinus rythm (dependent on modulation time and the | |
707 // sampling rate). The center of the sinus is moved to reduce the delay | |
708 // of the effect when the time or depth are low. | |
709 sinus = 1.0f - cos(2.0f * M_PI * State->Mod.Index / State->Mod.Range); | |
710 | |
711 // The depth determines the range over which to read the input samples | |
712 // from, so it must be filtered to reduce the distortion caused by even | |
713 // small parameter changes. | |
714 State->Mod.Filter = lerp(State->Mod.Filter, State->Mod.Depth, | |
715 State->Mod.Coeff); | |
716 | |
717 // Calculate the read offset and fraction between it and the next sample. | |
718 frac = (1.0f + (State->Mod.Filter * sinus)); | |
719 offset = (ALuint)frac; | |
720 frac -= offset; | |
721 | |
722 // Get the two samples crossed by the offset, and feed the delay line | |
723 // with the next input sample. | |
724 out0 = DelayLineOut(&State->Mod.Delay, State->Offset - offset); | |
725 out1 = DelayLineOut(&State->Mod.Delay, State->Offset - offset - 1); | |
726 DelayLineIn(&State->Mod.Delay, State->Offset, in); | |
727 | |
728 // Step the modulation index forward, keeping it bound to its range. | |
729 State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range; | |
730 | |
731 // The output is obtained by linearly interpolating the two samples that | |
732 // were acquired above. | |
733 return lerp(out0, out1, frac); | |
734 } | |
735 | |
736 // Delay line output routine for early reflections. | |
737 static __inline ALfloat EarlyDelayLineOut(ALverbState *State, ALuint index) | |
738 { | |
739 return AttenuatedDelayLineOut(&State->Early.Delay[index], | |
740 State->Offset - State->Early.Offset[index], | |
741 State->Early.Coeff[index]); | |
742 } | |
743 | |
744 // Given an input sample, this function produces four-channel output for the | |
745 // early reflections. | |
746 static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *out) | |
747 { | |
748 ALfloat d[4], v, f[4]; | |
749 | |
750 // Obtain the decayed results of each early delay line. | |
751 d[0] = EarlyDelayLineOut(State, 0); | |
752 d[1] = EarlyDelayLineOut(State, 1); | |
753 d[2] = EarlyDelayLineOut(State, 2); | |
754 d[3] = EarlyDelayLineOut(State, 3); | |
755 | |
756 /* The following uses a lossless scattering junction from waveguide | |
757 * theory. It actually amounts to a householder mixing matrix, which | |
758 * will produce a maximally diffuse response, and means this can probably | |
759 * be considered a simple feed-back delay network (FDN). | |
760 * N | |
761 * --- | |
762 * \ | |
763 * v = 2/N / d_i | |
764 * --- | |
765 * i=1 | |
766 */ | |
767 v = (d[0] + d[1] + d[2] + d[3]) * 0.5f; | |
768 // The junction is loaded with the input here. | |
769 v += in; | |
770 | |
771 // Calculate the feed values for the delay lines. | |
772 f[0] = v - d[0]; | |
773 f[1] = v - d[1]; | |
774 f[2] = v - d[2]; | |
775 f[3] = v - d[3]; | |
776 | |
777 // Re-feed the delay lines. | |
778 DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]); | |
779 DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]); | |
780 DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]); | |
781 DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]); | |
782 | |
783 // Output the results of the junction for all four channels. | |
784 out[0] = State->Early.Gain * f[0]; | |
785 out[1] = State->Early.Gain * f[1]; | |
786 out[2] = State->Early.Gain * f[2]; | |
787 out[3] = State->Early.Gain * f[3]; | |
788 } | |
789 | |
790 // All-pass input/output routine for late reverb. | |
791 static __inline ALfloat LateAllPassInOut(ALverbState *State, ALuint index, ALfloat in) | |
792 { | |
793 return AllpassInOut(&State->Late.ApDelay[index], | |
794 State->Offset - State->Late.ApOffset[index], | |
795 State->Offset, in, State->Late.ApFeedCoeff, | |
796 State->Late.ApCoeff[index]); | |
797 } | |
798 | |
799 // Delay line output routine for late reverb. | |
800 static __inline ALfloat LateDelayLineOut(ALverbState *State, ALuint index) | |
801 { | |
802 return AttenuatedDelayLineOut(&State->Late.Delay[index], | |
803 State->Offset - State->Late.Offset[index], | |
804 State->Late.Coeff[index]); | |
805 } | |
806 | |
807 // Low-pass filter input/output routine for late reverb. | |
808 static __inline ALfloat LateLowPassInOut(ALverbState *State, ALuint index, ALfloat in) | |
809 { | |
810 in = lerp(in, State->Late.LpSample[index], State->Late.LpCoeff[index]); | |
811 State->Late.LpSample[index] = in; | |
812 return in; | |
813 } | |
814 | |
815 // Given four decorrelated input samples, this function produces four-channel | |
816 // output for the late reverb. | |
817 static __inline ALvoid LateReverb(ALverbState *State, ALfloat *in, ALfloat *out) | |
818 { | |
819 ALfloat d[4], f[4]; | |
820 | |
821 // Obtain the decayed results of the cyclical delay lines, and add the | |
822 // corresponding input channels. Then pass the results through the | |
823 // low-pass filters. | |
824 | |
825 // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back | |
826 // to 0. | |
827 d[0] = LateLowPassInOut(State, 2, in[2] + LateDelayLineOut(State, 2)); | |
828 d[1] = LateLowPassInOut(State, 0, in[0] + LateDelayLineOut(State, 0)); | |
829 d[2] = LateLowPassInOut(State, 3, in[3] + LateDelayLineOut(State, 3)); | |
830 d[3] = LateLowPassInOut(State, 1, in[1] + LateDelayLineOut(State, 1)); | |
831 | |
832 // To help increase diffusion, run each line through an all-pass filter. | |
833 // When there is no diffusion, the shortest all-pass filter will feed the | |
834 // shortest delay line. | |
835 d[0] = LateAllPassInOut(State, 0, d[0]); | |
836 d[1] = LateAllPassInOut(State, 1, d[1]); | |
837 d[2] = LateAllPassInOut(State, 2, d[2]); | |
838 d[3] = LateAllPassInOut(State, 3, d[3]); | |
839 | |
840 /* Late reverb is done with a modified feed-back delay network (FDN) | |
841 * topology. Four input lines are each fed through their own all-pass | |
842 * filter and then into the mixing matrix. The four outputs of the | |
843 * mixing matrix are then cycled back to the inputs. Each output feeds | |
844 * a different input to form a circlular feed cycle. | |
845 * | |
846 * The mixing matrix used is a 4D skew-symmetric rotation matrix derived | |
847 * using a single unitary rotational parameter: | |
848 * | |
849 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2 | |
850 * [ -a, d, c, -b ] | |
851 * [ -b, -c, d, a ] | |
852 * [ -c, b, -a, d ] | |
853 * | |
854 * The rotation is constructed from the effect's diffusion parameter, | |
855 * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y | |
856 * with differing signs, and d is the coefficient x. The matrix is thus: | |
857 * | |
858 * [ x, y, -y, y ] n = sqrt(matrix_order - 1) | |
859 * [ -y, x, y, y ] t = diffusion_parameter * atan(n) | |
860 * [ y, -y, x, y ] x = cos(t) | |
861 * [ -y, -y, -y, x ] y = sin(t) / n | |
862 * | |
863 * To reduce the number of multiplies, the x coefficient is applied with | |
864 * the cyclical delay line coefficients. Thus only the y coefficient is | |
865 * applied when mixing, and is modified to be: y / x. | |
866 */ | |
867 f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3])); | |
868 f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3])); | |
869 f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3])); | |
870 f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] )); | |
871 | |
872 // Output the results of the matrix for all four channels, attenuated by | |
873 // the late reverb gain (which is attenuated by the 'x' mix coefficient). | |
874 out[0] = State->Late.Gain * f[0]; | |
875 out[1] = State->Late.Gain * f[1]; | |
876 out[2] = State->Late.Gain * f[2]; | |
877 out[3] = State->Late.Gain * f[3]; | |
878 | |
879 // Re-feed the cyclical delay lines. | |
880 DelayLineIn(&State->Late.Delay[0], State->Offset, f[0]); | |
881 DelayLineIn(&State->Late.Delay[1], State->Offset, f[1]); | |
882 DelayLineIn(&State->Late.Delay[2], State->Offset, f[2]); | |
883 DelayLineIn(&State->Late.Delay[3], State->Offset, f[3]); | |
884 } | |
885 | |
886 // Given an input sample, this function mixes echo into the four-channel late | |
887 // reverb. | |
888 static __inline ALvoid EAXEcho(ALverbState *State, ALfloat in, ALfloat *late) | |
889 { | |
890 ALfloat out, feed; | |
891 | |
892 // Get the latest attenuated echo sample for output. | |
893 feed = AttenuatedDelayLineOut(&State->Echo.Delay, | |
894 State->Offset - State->Echo.Offset, | |
895 State->Echo.Coeff); | |
896 | |
897 // Mix the output into the late reverb channels. | |
898 out = State->Echo.MixCoeff[0] * feed; | |
899 late[0] = (State->Echo.MixCoeff[1] * late[0]) + out; | |
900 late[1] = (State->Echo.MixCoeff[1] * late[1]) + out; | |
901 late[2] = (State->Echo.MixCoeff[1] * late[2]) + out; | |
902 late[3] = (State->Echo.MixCoeff[1] * late[3]) + out; | |
903 | |
904 // Mix the energy-attenuated input with the output and pass it through | |
905 // the echo low-pass filter. | |
906 feed += State->Echo.DensityGain * in; | |
907 feed = lerp(feed, State->Echo.LpSample, State->Echo.LpCoeff); | |
908 State->Echo.LpSample = feed; | |
909 | |
910 // Then the echo all-pass filter. | |
911 feed = AllpassInOut(&State->Echo.ApDelay, | |
912 State->Offset - State->Echo.ApOffset, | |
913 State->Offset, feed, State->Echo.ApFeedCoeff, | |
914 State->Echo.ApCoeff); | |
915 | |
916 // Feed the delay with the mixed and filtered sample. | |
917 DelayLineIn(&State->Echo.Delay, State->Offset, feed); | |
918 } | |
919 | |
920 // Perform the non-EAX reverb pass on a given input sample, resulting in | |
921 // four-channel output. | |
922 static __inline ALvoid VerbPass(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late) | |
923 { | |
924 ALfloat feed, taps[4]; | |
925 | |
926 // Low-pass filter the incoming sample. | |
927 in = lpFilter2P(&State->LpFilter, 0, in); | |
928 | |
929 // Feed the initial delay line. | |
930 DelayLineIn(&State->Delay, State->Offset, in); | |
931 | |
932 // Calculate the early reflection from the first delay tap. | |
933 in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]); | |
934 EarlyReflection(State, in, early); | |
935 | |
936 // Feed the decorrelator from the energy-attenuated output of the second | |
937 // delay tap. | |
938 in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]); | |
939 feed = in * State->Late.DensityGain; | |
940 DelayLineIn(&State->Decorrelator, State->Offset, feed); | |
941 | |
942 // Calculate the late reverb from the decorrelator taps. | |
943 taps[0] = feed; | |
944 taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]); | |
945 taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]); | |
946 taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]); | |
947 LateReverb(State, taps, late); | |
948 | |
949 // Step all delays forward one sample. | |
950 State->Offset++; | |
951 } | |
952 | |
953 // Perform the EAX reverb pass on a given input sample, resulting in four- | |
954 // channel output. | |
955 static __inline ALvoid EAXVerbPass(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late) | |
956 { | |
957 ALfloat feed, taps[4]; | |
958 | |
959 // Low-pass filter the incoming sample. | |
960 in = lpFilter2P(&State->LpFilter, 0, in); | |
961 | |
962 // Perform any modulation on the input. | |
963 in = EAXModulation(State, in); | |
964 | |
965 // Feed the initial delay line. | |
966 DelayLineIn(&State->Delay, State->Offset, in); | |
967 | |
968 // Calculate the early reflection from the first delay tap. | |
969 in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]); | |
970 EarlyReflection(State, in, early); | |
971 | |
972 // Feed the decorrelator from the energy-attenuated output of the second | |
973 // delay tap. | |
974 in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]); | |
975 feed = in * State->Late.DensityGain; | |
976 DelayLineIn(&State->Decorrelator, State->Offset, feed); | |
977 | |
978 // Calculate the late reverb from the decorrelator taps. | |
979 taps[0] = feed; | |
980 taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]); | |
981 taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]); | |
982 taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]); | |
983 LateReverb(State, taps, late); | |
984 | |
985 // Calculate and mix in any echo. | |
986 EAXEcho(State, in, late); | |
987 | |
988 // Step all delays forward one sample. | |
989 State->Offset++; | |
990 } | |
991 | |
992 // This destroys the reverb state. It should be called only when the effect | |
993 // slot has a different (or no) effect loaded over the reverb effect. | |
994 static ALvoid VerbDestroy(ALeffectState *effect) | |
995 { | |
996 ALverbState *State = (ALverbState*)effect; | |
997 if(State) | |
998 { | |
999 free(State->SampleBuffer); | |
1000 State->SampleBuffer = NULL; | |
1001 free(State); | |
1002 } | |
1003 } | |
1004 | |
1005 // This updates the device-dependant reverb state. This is called on | |
1006 // initialization and any time the device parameters (eg. playback frequency, | |
1007 // or format) have been changed. | |
1008 static ALboolean VerbDeviceUpdate(ALeffectState *effect, ALCdevice *Device) | |
1009 { | |
1010 ALverbState *State = (ALverbState*)effect; | |
1011 ALuint frequency = Device->Frequency; | |
1012 ALuint index; | |
1013 | |
1014 // Allocate the delay lines. | |
1015 if(!AllocLines(AL_FALSE, frequency, State)) | |
1016 return AL_FALSE; | |
1017 | |
1018 // The early reflection and late all-pass filter line lengths are static, | |
1019 // so their offsets only need to be calculated once. | |
1020 for(index = 0;index < 4;index++) | |
1021 { | |
1022 State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] * | |
1023 frequency); | |
1024 State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] * | |
1025 frequency); | |
1026 } | |
1027 | |
1028 return AL_TRUE; | |
1029 } | |
1030 | |
1031 // This updates the device-dependant EAX reverb state. This is called on | |
1032 // initialization and any time the device parameters (eg. playback frequency, | |
1033 // format) have been changed. | |
1034 static ALboolean EAXVerbDeviceUpdate(ALeffectState *effect, ALCdevice *Device) | |
1035 { | |
1036 ALverbState *State = (ALverbState*)effect; | |
1037 ALuint frequency = Device->Frequency, index; | |
1038 | |
1039 // Allocate the delay lines. | |
1040 if(!AllocLines(AL_TRUE, frequency, State)) | |
1041 return AL_FALSE; | |
1042 | |
1043 // Calculate the modulation filter coefficient. Notice that the exponent | |
1044 // is calculated given the current sample rate. This ensures that the | |
1045 // resulting filter response over time is consistent across all sample | |
1046 // rates. | |
1047 State->Mod.Coeff = aluPow(MODULATION_FILTER_COEFF, | |
1048 MODULATION_FILTER_CONST / frequency); | |
1049 | |
1050 // The early reflection and late all-pass filter line lengths are static, | |
1051 // so their offsets only need to be calculated once. | |
1052 for(index = 0;index < 4;index++) | |
1053 { | |
1054 State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] * | |
1055 frequency); | |
1056 State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] * | |
1057 frequency); | |
1058 } | |
1059 | |
1060 // The echo all-pass filter line length is static, so its offset only | |
1061 // needs to be calculated once. | |
1062 State->Echo.ApOffset = (ALuint)(ECHO_ALLPASS_LENGTH * frequency); | |
1063 | |
1064 return AL_TRUE; | |
1065 } | |
1066 | |
1067 // This updates the reverb state. This is called any time the reverb effect | |
1068 // is loaded into a slot. | |
1069 static ALvoid VerbUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffectslot *Slot) | |
1070 { | |
1071 ALverbState *State = (ALverbState*)effect; | |
1072 ALCdevice *Device = Context->Device; | |
1073 ALuint frequency = Device->Frequency; | |
1074 ALfloat cw, x, y, hfRatio, gain; | |
1075 ALuint index; | |
1076 | |
1077 // Calculate the master low-pass filter (from the master effect HF gain). | |
1078 cw = CalcI3DL2HFreq(Slot->effect.Params.Reverb.HFReference, frequency); | |
1079 // This is done with 2 chained 1-pole filters, so no need to square g. | |
1080 State->LpFilter.coeff = lpCoeffCalc(Slot->effect.Params.Reverb.GainHF, cw); | |
1081 | |
1082 // Update the initial effect delay. | |
1083 UpdateDelayLine(Slot->effect.Params.Reverb.ReflectionsDelay, | |
1084 Slot->effect.Params.Reverb.LateReverbDelay, | |
1085 frequency, State); | |
1086 | |
1087 // Update the early lines. | |
1088 UpdateEarlyLines(Slot->effect.Params.Reverb.Gain, | |
1089 Slot->effect.Params.Reverb.ReflectionsGain, | |
1090 Slot->effect.Params.Reverb.LateReverbDelay, State); | |
1091 | |
1092 // Update the decorrelator. | |
1093 UpdateDecorrelator(Slot->effect.Params.Reverb.Density, frequency, State); | |
1094 | |
1095 // Get the mixing matrix coefficients (x and y). | |
1096 CalcMatrixCoeffs(Slot->effect.Params.Reverb.Diffusion, &x, &y); | |
1097 // Then divide x into y to simplify the matrix calculation. | |
1098 State->Late.MixCoeff = y / x; | |
1099 | |
1100 // If the HF limit parameter is flagged, calculate an appropriate limit | |
1101 // based on the air absorption parameter. | |
1102 hfRatio = Slot->effect.Params.Reverb.DecayHFRatio; | |
1103 if(Slot->effect.Params.Reverb.DecayHFLimit && | |
1104 Slot->effect.Params.Reverb.AirAbsorptionGainHF < 1.0f) | |
1105 hfRatio = CalcLimitedHfRatio(hfRatio, | |
1106 Slot->effect.Params.Reverb.AirAbsorptionGainHF, | |
1107 Slot->effect.Params.Reverb.DecayTime); | |
1108 | |
1109 // Update the late lines. | |
1110 UpdateLateLines(Slot->effect.Params.Reverb.Gain, Slot->effect.Params.Reverb.LateReverbGain, | |
1111 x, Slot->effect.Params.Reverb.Density, Slot->effect.Params.Reverb.DecayTime, | |
1112 Slot->effect.Params.Reverb.Diffusion, hfRatio, cw, frequency, State); | |
1113 | |
1114 // Update channel gains | |
1115 gain = Slot->Gain; | |
1116 gain *= aluSqrt(2.0f/Device->NumChan); | |
1117 gain *= ReverbBoost; | |
1118 for(index = 0;index < MAXCHANNELS;index++) | |
1119 State->Gain[index] = 0.0f; | |
1120 for(index = 0;index < Device->NumChan;index++) | |
1121 { | |
1122 enum Channel chan = Device->Speaker2Chan[index]; | |
1123 State->Gain[chan] = gain; | |
1124 } | |
1125 } | |
1126 | |
1127 // This updates the EAX reverb state. This is called any time the EAX reverb | |
1128 // effect is loaded into a slot. | |
1129 static ALvoid EAXVerbUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffectslot *Slot) | |
1130 { | |
1131 ALverbState *State = (ALverbState*)effect; | |
1132 ALuint frequency = Context->Device->Frequency; | |
1133 ALfloat cw, x, y, hfRatio; | |
1134 | |
1135 // Calculate the master low-pass filter (from the master effect HF gain). | |
1136 cw = CalcI3DL2HFreq(Slot->effect.Params.Reverb.HFReference, frequency); | |
1137 // This is done with 2 chained 1-pole filters, so no need to square g. | |
1138 State->LpFilter.coeff = lpCoeffCalc(Slot->effect.Params.Reverb.GainHF, cw); | |
1139 | |
1140 // Update the modulator line. | |
1141 UpdateModulator(Slot->effect.Params.Reverb.ModulationTime, | |
1142 Slot->effect.Params.Reverb.ModulationDepth, | |
1143 frequency, State); | |
1144 | |
1145 // Update the initial effect delay. | |
1146 UpdateDelayLine(Slot->effect.Params.Reverb.ReflectionsDelay, | |
1147 Slot->effect.Params.Reverb.LateReverbDelay, | |
1148 frequency, State); | |
1149 | |
1150 // Update the early lines. | |
1151 UpdateEarlyLines(Slot->effect.Params.Reverb.Gain, | |
1152 Slot->effect.Params.Reverb.ReflectionsGain, | |
1153 Slot->effect.Params.Reverb.LateReverbDelay, State); | |
1154 | |
1155 // Update the decorrelator. | |
1156 UpdateDecorrelator(Slot->effect.Params.Reverb.Density, frequency, State); | |
1157 | |
1158 // Get the mixing matrix coefficients (x and y). | |
1159 CalcMatrixCoeffs(Slot->effect.Params.Reverb.Diffusion, &x, &y); | |
1160 // Then divide x into y to simplify the matrix calculation. | |
1161 State->Late.MixCoeff = y / x; | |
1162 | |
1163 // If the HF limit parameter is flagged, calculate an appropriate limit | |
1164 // based on the air absorption parameter. | |
1165 hfRatio = Slot->effect.Params.Reverb.DecayHFRatio; | |
1166 if(Slot->effect.Params.Reverb.DecayHFLimit && | |
1167 Slot->effect.Params.Reverb.AirAbsorptionGainHF < 1.0f) | |
1168 hfRatio = CalcLimitedHfRatio(hfRatio, | |
1169 Slot->effect.Params.Reverb.AirAbsorptionGainHF, | |
1170 Slot->effect.Params.Reverb.DecayTime); | |
1171 | |
1172 // Update the late lines. | |
1173 UpdateLateLines(Slot->effect.Params.Reverb.Gain, Slot->effect.Params.Reverb.LateReverbGain, | |
1174 x, Slot->effect.Params.Reverb.Density, Slot->effect.Params.Reverb.DecayTime, | |
1175 Slot->effect.Params.Reverb.Diffusion, hfRatio, cw, frequency, State); | |
1176 | |
1177 // Update the echo line. | |
1178 UpdateEchoLine(Slot->effect.Params.Reverb.Gain, Slot->effect.Params.Reverb.LateReverbGain, | |
1179 Slot->effect.Params.Reverb.EchoTime, Slot->effect.Params.Reverb.DecayTime, | |
1180 Slot->effect.Params.Reverb.Diffusion, Slot->effect.Params.Reverb.EchoDepth, | |
1181 hfRatio, cw, frequency, State); | |
1182 | |
1183 // Update early and late 3D panning. | |
1184 Update3DPanning(Context->Device, Slot->effect.Params.Reverb.ReflectionsPan, | |
1185 Slot->effect.Params.Reverb.LateReverbPan, Slot->Gain, State); | |
1186 } | |
1187 | |
1188 // This processes the reverb state, given the input samples and an output | |
1189 // buffer. | |
1190 static ALvoid VerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[MAXCHANNELS]) | |
1191 { | |
1192 ALverbState *State = (ALverbState*)effect; | |
1193 ALuint index; | |
1194 ALfloat early[4], late[4], out[4]; | |
1195 const ALfloat *panGain = State->Gain; | |
1196 (void)Slot; | |
1197 | |
1198 for(index = 0;index < SamplesToDo;index++) | |
1199 { | |
1200 // Process reverb for this sample. | |
1201 VerbPass(State, SamplesIn[index], early, late); | |
1202 | |
1203 // Mix early reflections and late reverb. | |
1204 out[0] = (early[0] + late[0]); | |
1205 out[1] = (early[1] + late[1]); | |
1206 out[2] = (early[2] + late[2]); | |
1207 out[3] = (early[3] + late[3]); | |
1208 | |
1209 // Output the results. | |
1210 SamplesOut[index][FRONT_LEFT] += panGain[FRONT_LEFT] * out[0]; | |
1211 SamplesOut[index][FRONT_RIGHT] += panGain[FRONT_RIGHT] * out[1]; | |
1212 SamplesOut[index][FRONT_CENTER] += panGain[FRONT_CENTER] * out[3]; | |
1213 SamplesOut[index][SIDE_LEFT] += panGain[SIDE_LEFT] * out[0]; | |
1214 SamplesOut[index][SIDE_RIGHT] += panGain[SIDE_RIGHT] * out[1]; | |
1215 SamplesOut[index][BACK_LEFT] += panGain[BACK_LEFT] * out[0]; | |
1216 SamplesOut[index][BACK_RIGHT] += panGain[BACK_RIGHT] * out[1]; | |
1217 SamplesOut[index][BACK_CENTER] += panGain[BACK_CENTER] * out[2]; | |
1218 } | |
1219 } | |
1220 | |
1221 // This processes the EAX reverb state, given the input samples and an output | |
1222 // buffer. | |
1223 static ALvoid EAXVerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[MAXCHANNELS]) | |
1224 { | |
1225 ALverbState *State = (ALverbState*)effect; | |
1226 ALuint index; | |
1227 ALfloat early[4], late[4]; | |
1228 (void)Slot; | |
1229 | |
1230 for(index = 0;index < SamplesToDo;index++) | |
1231 { | |
1232 // Process reverb for this sample. | |
1233 EAXVerbPass(State, SamplesIn[index], early, late); | |
1234 | |
1235 // Unfortunately, while the number and configuration of gains for | |
1236 // panning adjust according to MAXCHANNELS, the output from the | |
1237 // reverb engine is not so scalable. | |
1238 SamplesOut[index][FRONT_LEFT] += | |
1239 (State->Early.PanGain[FRONT_LEFT]*early[0] + | |
1240 State->Late.PanGain[FRONT_LEFT]*late[0]); | |
1241 SamplesOut[index][FRONT_RIGHT] += | |
1242 (State->Early.PanGain[FRONT_RIGHT]*early[1] + | |
1243 State->Late.PanGain[FRONT_RIGHT]*late[1]); | |
1244 SamplesOut[index][FRONT_CENTER] += | |
1245 (State->Early.PanGain[FRONT_CENTER]*early[3] + | |
1246 State->Late.PanGain[FRONT_CENTER]*late[3]); | |
1247 SamplesOut[index][SIDE_LEFT] += | |
1248 (State->Early.PanGain[SIDE_LEFT]*early[0] + | |
1249 State->Late.PanGain[SIDE_LEFT]*late[0]); | |
1250 SamplesOut[index][SIDE_RIGHT] += | |
1251 (State->Early.PanGain[SIDE_RIGHT]*early[1] + | |
1252 State->Late.PanGain[SIDE_RIGHT]*late[1]); | |
1253 SamplesOut[index][BACK_LEFT] += | |
1254 (State->Early.PanGain[BACK_LEFT]*early[0] + | |
1255 State->Late.PanGain[BACK_LEFT]*late[0]); | |
1256 SamplesOut[index][BACK_RIGHT] += | |
1257 (State->Early.PanGain[BACK_RIGHT]*early[1] + | |
1258 State->Late.PanGain[BACK_RIGHT]*late[1]); | |
1259 SamplesOut[index][BACK_CENTER] += | |
1260 (State->Early.PanGain[BACK_CENTER]*early[2] + | |
1261 State->Late.PanGain[BACK_CENTER]*late[2]); | |
1262 } | |
1263 } | |
1264 | |
1265 // This creates the reverb state. It should be called only when the reverb | |
1266 // effect is loaded into a slot that doesn't already have a reverb effect. | |
1267 ALeffectState *VerbCreate(void) | |
1268 { | |
1269 ALverbState *State = NULL; | |
1270 ALuint index; | |
1271 | |
1272 State = malloc(sizeof(ALverbState)); | |
1273 if(!State) | |
1274 return NULL; | |
1275 | |
1276 State->state.Destroy = VerbDestroy; | |
1277 State->state.DeviceUpdate = VerbDeviceUpdate; | |
1278 State->state.Update = VerbUpdate; | |
1279 State->state.Process = VerbProcess; | |
1280 | |
1281 State->TotalSamples = 0; | |
1282 State->SampleBuffer = NULL; | |
1283 | |
1284 State->LpFilter.coeff = 0.0f; | |
1285 State->LpFilter.history[0] = 0.0f; | |
1286 State->LpFilter.history[1] = 0.0f; | |
1287 | |
1288 State->Mod.Delay.Mask = 0; | |
1289 State->Mod.Delay.Line = NULL; | |
1290 State->Mod.Index = 0; | |
1291 State->Mod.Range = 1; | |
1292 State->Mod.Depth = 0.0f; | |
1293 State->Mod.Coeff = 0.0f; | |
1294 State->Mod.Filter = 0.0f; | |
1295 | |
1296 State->Delay.Mask = 0; | |
1297 State->Delay.Line = NULL; | |
1298 State->DelayTap[0] = 0; | |
1299 State->DelayTap[1] = 0; | |
1300 | |
1301 State->Early.Gain = 0.0f; | |
1302 for(index = 0;index < 4;index++) | |
1303 { | |
1304 State->Early.Coeff[index] = 0.0f; | |
1305 State->Early.Delay[index].Mask = 0; | |
1306 State->Early.Delay[index].Line = NULL; | |
1307 State->Early.Offset[index] = 0; | |
1308 } | |
1309 | |
1310 State->Decorrelator.Mask = 0; | |
1311 State->Decorrelator.Line = NULL; | |
1312 State->DecoTap[0] = 0; | |
1313 State->DecoTap[1] = 0; | |
1314 State->DecoTap[2] = 0; | |
1315 | |
1316 State->Late.Gain = 0.0f; | |
1317 State->Late.DensityGain = 0.0f; | |
1318 State->Late.ApFeedCoeff = 0.0f; | |
1319 State->Late.MixCoeff = 0.0f; | |
1320 for(index = 0;index < 4;index++) | |
1321 { | |
1322 State->Late.ApCoeff[index] = 0.0f; | |
1323 State->Late.ApDelay[index].Mask = 0; | |
1324 State->Late.ApDelay[index].Line = NULL; | |
1325 State->Late.ApOffset[index] = 0; | |
1326 | |
1327 State->Late.Coeff[index] = 0.0f; | |
1328 State->Late.Delay[index].Mask = 0; | |
1329 State->Late.Delay[index].Line = NULL; | |
1330 State->Late.Offset[index] = 0; | |
1331 | |
1332 State->Late.LpCoeff[index] = 0.0f; | |
1333 State->Late.LpSample[index] = 0.0f; | |
1334 } | |
1335 | |
1336 for(index = 0;index < MAXCHANNELS;index++) | |
1337 { | |
1338 State->Early.PanGain[index] = 0.0f; | |
1339 State->Late.PanGain[index] = 0.0f; | |
1340 } | |
1341 | |
1342 State->Echo.DensityGain = 0.0f; | |
1343 State->Echo.Delay.Mask = 0; | |
1344 State->Echo.Delay.Line = NULL; | |
1345 State->Echo.ApDelay.Mask = 0; | |
1346 State->Echo.ApDelay.Line = NULL; | |
1347 State->Echo.Coeff = 0.0f; | |
1348 State->Echo.ApFeedCoeff = 0.0f; | |
1349 State->Echo.ApCoeff = 0.0f; | |
1350 State->Echo.Offset = 0; | |
1351 State->Echo.ApOffset = 0; | |
1352 State->Echo.LpCoeff = 0.0f; | |
1353 State->Echo.LpSample = 0.0f; | |
1354 State->Echo.MixCoeff[0] = 0.0f; | |
1355 State->Echo.MixCoeff[1] = 0.0f; | |
1356 | |
1357 State->Offset = 0; | |
1358 | |
1359 State->Gain = State->Late.PanGain; | |
1360 | |
1361 return &State->state; | |
1362 } | |
1363 | |
1364 ALeffectState *EAXVerbCreate(void) | |
1365 { | |
1366 ALeffectState *State = VerbCreate(); | |
1367 if(State && EmulateEAXReverb == AL_FALSE) | |
1368 { | |
1369 State->DeviceUpdate = EAXVerbDeviceUpdate; | |
1370 State->Update = EAXVerbUpdate; | |
1371 State->Process = EAXVerbProcess; | |
1372 } | |
1373 return State; | |
1374 } |